Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Plant Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917222

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human Cd intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation, distribution, and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTL) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL_DT) population derived from two Polish wheat varieties (dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16-17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; three other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPWgenotypes of the RIL_DT population and two other natural populations, based on a KASP marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.

2.
BMC Genomics ; 25(1): 253, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448864

RESUMO

BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.


Assuntos
Resistência à Seca , Elymus , Mapeamento Cromossômico , Cromossomos , Ácidos Graxos
3.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698276

RESUMO

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Assuntos
Aegilops , Basidiomycota , Mapeamento Cromossômico , Resistência à Doença , Perfilação da Expressão Gênica , Genes de Plantas , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Aegilops/genética , Aegilops/microbiologia , Melhoramento Vegetal , Transcriptoma , Cromossomos de Plantas/genética , Puccinia/patogenicidade , Puccinia/fisiologia , Regulação da Expressão Gênica de Plantas
4.
Theor Appl Genet ; 137(1): 17, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198011

RESUMO

KEY MESSAGE: The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Tetraploidia , Poaceae/genética
5.
Biochem Genet ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850375

RESUMO

The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.

6.
Physiol Mol Biol Plants ; 30(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633269

RESUMO

The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01433-w.

7.
BMC Genomics ; 24(1): 178, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020178

RESUMO

BACKGROUND: Fusarium crown rot (FCR) is a chronic disease of cereals worldwide. Compared with tetraploid wheat, hexaploid wheat is more resistant to FCR infection. The underlying reasons for the differences are still not clear. In this study, we compared FCR responses of 10 synthetic hexaploid wheats (SHWs) and their tetraploid and diploid parents. We then performed transcriptome analysis to uncover the molecular mechanism of FCR on these SHWs and their parents. RESULTS: We observed higher levels of FCR resistance in the SHWs compared with their tetraploid parents. The transcriptome analysis suggested that multiple defense pathways responsive to FCR infection were upregulated in the SHWs. Notably, phenylalanine ammonia lyase (PAL) genes, involved in lignin and salicylic acid (SA) biosynthesis, exhibited a higher level of expression to FCR infection in the SHWs. Physiological and biochemical analysis validated that PAL activity and SA and lignin contents of the stem bases were higher in SHWs than in their tetraploid parents. CONCLUSION: Overall, these findings imply that improved FCR resistance in SHWs compared with their tetraploid parents is probably related to higher levels of response on PAL-mediated lignin and SA biosynthesis pathways.


Assuntos
Fusarium , Fusarium/fisiologia , Tetraploidia , Lignina , Poaceae , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética
8.
Theor Appl Genet ; 136(8): 177, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540294

RESUMO

KEY MESSAGE: Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.


Assuntos
Coloração Cromossômica , Oligonucleotídeos , Oligonucleotídeos/genética , Poaceae/genética , Triticum/genética , Cromossomos
9.
Theor Appl Genet ; 136(4): 67, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952028

RESUMO

KEY MESSAGE: Combined with BSE-Seq analysis and multiple genetic populations, three genes involved in stripe rust resistance were identified in Chinese wheat landrace Dahongpao, including a novel suppressor on 2BS. Dahongpao (DHP), a landrace of hexaploid wheat in China, exhibits a high degree of stripe rust resistance in the field for many years. In this study, bulked segregant analysis coupled with exome capture sequencing (BSE-Seq) was used to identify genes encoding stripe rust resistance in multiple genetic populations from the cross between DHP and a susceptible hexaploid Australian cultivar, Avocet S (AvS). The most effective QTL in DHP was Yr18, explaining up to 53.08% of phenotypic variance in the F2:3 families. To identify additional genes, secondary mapping populations SP1 and SP2 were produced by crossing AvS with two resistant lines derived from F2:3 families lacking Yr18. An all-stage resistance gene, Yr.DHP-6AS, was identified via BSE-Seq analysis of SP1. Combined the recombinant plants from both SP1 and SP2, Yr.DHP-6AS was located between KP6A_1.66 and KP6A_8.18, corresponding to the same region as Yr81. In addition, secondary mapping populations SP3 and SP4 were developed by selfing a segregating line from F2:3 families lacking Yr18. A novel suppressor gene on chromosome 2BS was identified from DHP for effectively suppressing the resistance of Yr.DHP-6AS in the SP3 and SP4. As a result, the wheat lines carrying both Yr18 and Yr.DHP-6AS show higher level of stripe rust resistance than DHP, providing an effective and simple combination for developing new wheat cultivars with ASR and APR genes. Further, the newly developed KASP markers, KP6A_1.99 and KP6A_5.22, will facilitate the application of Yr.DHP-6AS in wheat breeding via marker-assisted selection.


Assuntos
Basidiomycota , Triticum , Humanos , Mapeamento Cromossômico , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Austrália , Doenças das Plantas/genética
10.
Plant Dis ; 107(10): 3085-3095, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079013

RESUMO

Identifying novel loci of yield-related traits and resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) in wheat will help in breeding wheat that can meet projected demands in diverse environmental and agricultural practices. We performed a genome-wide association study with 24,767 single nucleotide polymorphisms (SNPs) in 180 wheat accessions that originated in 16 Asian or European countries between latitudes 30°N and 45°N. We detected seven accessions with desirable yield-related traits and 42 accessions that showed stable, high degrees of stripe rust resistance in multienvironment field assessments. A marker-trait association analysis of yield-related traits detected 18 quantitative trait loci (QTLs) in at least two test environments and two QTLs related to stripe rust resistance in at least three test environments. Five of these QTLs were identified as potentially novel QTLs by comparing their physical locations with those of known QTLs in the Chinese Spring (CS) reference genome RefSeq v1.1 published by the International Wheat Genome Sequencing Consortium; two were for spike length, one was for grain number per spike, one was for spike number, and one was for stripe rust resistance at the adult plant stage. We also identified 14 candidate genes associated with the five novel QTLs. These QTLs and candidate genes will provide breeders with new germplasm and can be used to conduct marker-assisted selection in breeding wheat with improved yield and stripe rust resistance.


Assuntos
Basidiomycota , Estudo de Associação Genômica Ampla , Triticum/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Basidiomycota/genética
11.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675124

RESUMO

The halophytic wild relatives within Triticeae might provide valuable sources of salt tolerance for wheat breeding, and attempts to use these sources of tolerance have been made for improving salt tolerance in wheat by distant hybridization. A novel wheat substitution line of K17-1078-3 was developed using common wheat varieties of Chuannong16 (CN16), Zhengmai9023 (ZM9023), and partial amphidiploid Trititrigia8801 (8801) as parents, and identified as the 3E(3D) substitution line. The substitution line was compared with their parents for salt tolerance in hydroponic culture to assess their growth. The results showed that less Na+ accumulation and lower Na+/K+ ratio in both shoots and roots were achieved in K17-1078-3 under salinity compared to its wheat parents. The root growth and development of K17-1078-3 was less responsive to salinity. When exposed to high salt treatment, K17-1078-3 had a higher photosynthesis rate, more efficient water use efficiency, and greater antioxidant capacity and stronger osmotic adjustment ability than its wheat parents. In conclusion, a variety of physiological responses and root system adaptations were involved in enhancing salt tolerance in K17-1078-3, which indicated that chromosome 3E possessed the salt tolerance locus. It is possible to increase substantially the salt tolerance of wheat by the introduction of chromosome 3E into wheat genetic background.


Assuntos
Plântula , Triticum , Plântula/genética , Tetraploidia , Melhoramento Vegetal , Poaceae/genética , Tolerância ao Sal/genética , Cromossomos de Plantas/genética
12.
BMC Genomics ; 23(1): 309, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436853

RESUMO

BACKGROUND: Psathyrostachys huashanica Keng has long been used as a genetic resource for improving wheat cultivar because of its genes mediating the resistance to various diseases (stripe rust, leaf rust, take-all, and powdery mildew) as well as its desirable agronomic traits. However, a high-resolution fluorescence in situ hybridization (FISH) karyotype of P. huashanica remains unavailable. RESULTS: To develop chromosome-specific FISH markers for P. huashanica, repetitive sequences, including pSc119.2, pTa535, pTa713, pAs1, (AAC)5, (CTT)12, pSc200, pTa71A-2, and Oligo-44 were used for a FISH analysis. The results indicated that the combination of pSc200, pTa71A-2 and Oligo-44 probes can clearly identify all Ns genomic chromosomes in the two P. huashanica germplasms. The homoeologous relationships between individual P. huashanica chromosomes and common wheat chromosomes were clarified by FISH painting. Marker validation analyses revealed that the combination of pSc200, pTa71A-2, and Oligo-44 for a FISH analysis can distinguish the P. huashanica Ns-genome chromosomes from wheat chromosomes, as well as all chromosomes (except 4Ns) from the chromosomes of diploid wheat relatives carrying St, E, V, I, P and R genomes. Additionally, the probes were applicable for discriminating between the P. huashanica Ns-genome chromosomes in all homologous groups and the corresponding chromosomes in Psathyrostachys juncea and most Leymus species containing the Ns genome. Furthermore, six wheat-P. huashanica chromosome addition lines (i.e., 2Ns, 3Ns, 4Ns, 7Ns chromosomes and chromosomal segments) were characterized using the newly developed FISH markers. Thus, these probes can rapidly and precisely detect P. huashanica alien chromosomes in the wheat background. CONCLUSIONS: The FISH karyotype established in this study lays a solid foundation for the efficient identification of P. huashanica chromosomes in wheat genetic improvement programs.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Cromossomos de Plantas/genética , Resistência à Doença/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Cariotipagem , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética
13.
BMC Plant Biol ; 22(1): 57, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105308

RESUMO

BACKGROUND: Elymus breviaristatus and Elymus sinosubmuticus are perennial herbs, not only morphologically similar but also sympatric distribution. The genome composition of E. sinosubmuticus has not been reported, and the relationship between E. sinosubmuticus and E. breviaristatus is still controversial. We performed artificial hybridization, genomic in situ hybridization, and phylogenetic analyses to clarify whether the two taxa were the same species. RESULTS: The high frequency bivalent (with an average of 20.62 bivalents per cell) at metaphase I of pollen mother cells of the artificial hybrids of E. breviaristatus (StYH) × E. sinosubmuticus was observed. It illustrated that E. sinosubmuticus was closely related to E. breviaristatus. Based on genomic in situ hybridization results, we confirmed that E. sinosubmuticus was an allohexaploid, and the genomic constitution was StYH. Phylogenetic analysis results also supported that this species contained St, Y, and H genomes. In their F1 hybrids, pollen activity was 53.90%, and the seed setting rate was 22.46%. Those indicated that the relationship between E. sinosubmuticus and E. breviaristatus is intersubspecific rather than interspecific, and it is reasonable to treated E. sinosubmuticus as the subspecies of E. breviaristatus. CONCLUSIONS: In all, the genomic constitutions of E. sinosubmuticus and E. breviaristatus were StYH, and they are species in the genus Campeiostachys. Because E. breviaristatus was treated as Campeistachys breviaristata, Elymus sinosubmuticus should be renamed Campeiostachys breviaristata (Keng) Y. H. Zhou, H. Q. Zhang et C. R. Yang subsp. sinosubmuticus (S. L. Chen) Y. H. Zhou, H. Q. Zhang et L. Tan.


Assuntos
Quimera/genética , Classificação , Elymus/classificação , Elymus/genética , Genoma de Planta , Hibridização Genética , Filogenia , China , Variação Genética , Especificidade da Espécie
14.
Cytogenet Genome Res ; 162(6): 334-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36724748

RESUMO

Natural hybridization has been frequently observed in Triticeae; however, few studies have investigated the origin of natural intergeneric Triticeae hybrids. In the present study, we discovered three putative hybrid Triticeae plants in the Western Sichuan Plateau of China. Morphologically, the putative hybrids were intermediate between Kengyilia melanthera (2n = 6x = 42; StStYYPP) and Campeiostachys dahurica var. tangutorum (2n = 6x = 42; StStYYHH) with greater plant height and tiller number. Cytological analyses demonstrated that the hybrids were hexaploid with 42 chromosomes (2n = 6x = 42). At metaphase I, 12.10-12.58 bivalents and 13.81-14.18 univalents per cell were observed in the hybrid plants. Genomic in situ hybridization demonstrated that the hybrids had StStYYHP genomes. Phylogenetic analysis of Acc1 sequences indicated that the hybrids were closely related to K. melanthera and C. dahurica var. tangutorum. Our morphological, cytological, and molecular analyses indicate that these hexaploid natural hybrid plants may be hybrids of K. melanthera and C. dahurica var. tangutorum.


Assuntos
Elymus , Poaceae , Poaceae/genética , Filogenia , Genoma de Planta , Análise Citogenética , Hibridização Genética , Hibridização In Situ , Elymus/genética
15.
Mol Phylogenet Evol ; 175: 107591, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863609

RESUMO

Tracing evolutionary history proves challenging for polyploid groups that have evolved rapidly, especially if an ancestor of a polyploid is extinct. The Ns-containing polyploids are recognized as the NsXm and StHNsXm genomic constitutions in Triticeae. The Ns originated from Psathyrostachys, while the Xm represented a genome of unknown origin. Here, we use genetic information in plastome to trace the complex lineage history of the Ns-containing polyploid species by sampling 26 polyploids and 90 diploid taxa representing 23 basic genomes in Triticeae. Phylogenetic reconstruction, cluster plot of genetic distance matrix, and migration event demonstrated that (1) the Ns plastome originated from different Psathyrostachys species, and the Xm plastome may originate from an ancestral lineage of Henrardia, Agropyron, and Eremopyrum; (2) the Ns, Xm, and St genome donors separately served as the maternal parents during the speciation of the Ns-containing polyploid species, resulting in a maternal haplotype polymorphism; (3) North AmericanLeymusspecies might originate from colonization during late Miocene via the Bering land bridge and were the paternal donor of the StHNsXm genome Pascopyrum species. Our results shed new light on our understanding of the rich diversity and ecological adaptation of the Ns-containing polyploid species.


Assuntos
Poaceae , Poliploidia , Evolução Biológica , Genoma de Planta , Filogenia , Poaceae/genética , Análise de Sequência de DNA
16.
Theor Appl Genet ; 135(10): 3643-3660, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057866

RESUMO

KEY MESSAGE: Rht22 was fine mapped in the interval of 0.53-1.48 Mb on 7AS, which reduces cell number of internode to cause semi-dwarfism in Jianyangailanmai. As a valuable germplasm resource for wheat genetic improvement, tetraploid wheat has several reduced height (Rht) and enhanced harvest index genes. Rht22, discovered in Jianyangailanmai (JAM, Triticum turgidum L., 2n = 4x = 28, AABB), significantly increases the spikelet number per spike, but its accurate chromosomal position is still unknown. In this study, a high-density genetic map was constructed using specific-length amplified fragment sequencing in an F7 RIL_DJ population, which was derived from a cross between dwarf Polish wheat (T. polonicum L., 2n = 4x = 28, AABB) and JAM. Two plant height loci, Qph.sicau-4B and Qph.sicau-7A, were mapped on chromosomes 4BS and 7AS, respectively. Qph.sicau-7A was mapped to the 0.33-4.46 Mb interval on 7AS and likely represents the candidate region of Rht22. Fine mapping confirmed and narrowed Rht22 on chromosome arm 7AS between Xbag295.s53 and Xb295.191 in three different populations. The physical region ranged from 0.53 to 1.48 Mb and included 18 candidate genes. Transcriptome analysis of two pairs of near-isogenic lines revealed that 135 differentially expressed genes (DEGs) were associated with semi-dwarfism. Of these, the expression of 83 annotated DEGs involved in hormones synthesis and signal transduction, cell wall composition, DNA replication, microtubule and phragmoplast arrays was significantly down-regulated in the semi-dwarf line. Therefore, Rht22 causes semi-dwarfism in JAM by disrupting these cellular processes, which impairs cell proliferation and reduces internode cell number.


Assuntos
Nanismo , Triticum , Mapeamento Cromossômico , Nanismo/genética , Hormônios , Fenótipo , Locos de Características Quantitativas , Tetraploidia , Triticum/genética
17.
Theor Appl Genet ; 135(8): 2627-2639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748907

RESUMO

KEY MESSAGE: Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt). This study was conducted to identify the stem rust resistance (Sr) gene(s) in both accessions. Genetic analysis of the resistance in RL 5271 identified a single dominant allele (SrRL5271) controlling resistance, whereas resistance segregated at two loci (SR672.1 and SR672.2) for a cross of CPI110672. Bulked segregant analysis placed SrRL5271 and Sr672.1 in a region on chromosome arm 2DS that encodes Sr46. Molecular marker screening, mapping and genomic sequence analysis demonstrated SrRL5271 and Sr672.1 are alleles of Sr46. The amino acid sequence of SrRL5271 and Sr672.1 is identical but differs from Sr46 (hereafter referred to as Sr46_h1 by following the gene nomenclature in wheat) by a single amino acid (N763K) and is thus designated Sr46_h2. Screening of a panel of Ae. tauschii accessions identified an additional allelic variant that differed from Sr46_h2 by a different amino acid (A648V) and was designated Sr46_h3. By contrast, the protein encoded by the susceptible allele of Ae. tauschii accession AL8/78 differed from these resistance proteins by 54 amino acid substitutions (94% nucleotide sequence gene identity). Cloning and complementation tests of the three resistance haplotypes confirmed their resistance to Pgt race 98-1,2,3,5,6 and partial resistance to Pgt race TTRTF in bread wheat. The three Sr46 haplotypes, with no virulent races detected yet, represent a valuable source for improving stem resistance in wheat.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , Diploide , Resistência à Doença/genética , Genes de Plantas , Haplótipos , Doenças das Plantas/genética , Puccinia
18.
Plant Dis ; 106(3): 975-983, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34698515

RESUMO

Stripe rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici are devastating diseases of wheat worldwide. Exploration of new disease-resistant genes from cultivated wheat and wild relatives are the most effective means of reducing the amounts of fungicides applied to combat these diseases. Thinopyrum scirpeum (2n = 4x = 28, EEEE) is an important promising reservoir of useful genes, including stripe rust and powdery mildew resistance, and may be useful for increasing wheat disease resistance. Here, we characterize a novel wheat-Th. scirpeum disomic substitution line, K16-730-3, and chromosome-specific markers were developed that can be used to trace the Th. scirpeum chromosome or chromosome segments transferred into wheat. Genomic in situ hybridization and fluorescence in situ hybridization analyses indicated that K16-730-3 is a new 4E (4D) chromosomal substitution line. Evaluation of seedling and adult disease responses revealed that K16-730-3 is resistant to stripe rust and powdery mildew. In addition, no obvious difference in grain yield was observed between K16-730-3 and its wheat parents. Genotyping-by-sequencing analyses indicated that 74 PCR-based markers can accurately trace chromosome 4E, which were linked to the disease resistance genes in the wheat background. Further marker validation analyses revealed that 13 specific markers can distinguish between the E-genome chromosomes of Th. scirpeum and the chromosomes of other wheat-related species. The new substitution line K16-730-3 carrying the stripe rust and powdery mildew resistance genes will be useful as novel germplasm in breeding for disease resistance. The markers developed in this study can be used in marker-assisted selection for increasing disease resistance in wheat.


Assuntos
Cromossomos de Plantas , Triticum , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
19.
Plant Dis ; 106(4): 1209-1215, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34818919

RESUMO

Stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most destructive diseases of wheat. Identifying novel resistance genes applicable for developing disease-resistant cultivars is important for the sustainable control of wheat stripe rust. Chinese wheat landrace 'Xiaohemai' ('XHM') is an elite germplasm line with all-stage resistance (ASR) effective against predominant Chinese P. striiformis f. sp. tritici races. In this study, we performed a bulked segregant analysis coupled with exome capture sequencing (BSE-seq) to identify a candidate genomic region strongly associated with stripe rust resistance on chromosome 1AL in 173 F2:3 lines derived from the cross 'XHM' × 'Avocet S'. The gene, designated as YrXH-1AL, was validated by a conventional quantitative trait locus analysis using newly developed Kompetitive allele-specific PCR (KASP) markers, explaining up to 48.50% of the phenotypic variance. By testing a secondary mapping population comprising 144 lines from the same cross at the seedling stage with prevalent P. striiformis f. sp. tritici race CYR34, YrXH-1AL was identified as a single Mendelian factor in a 1.5-cM interval flanked by KASP markers KP1A_484.33 and KP1A_490.09. This region corresponded to a 5.76-Mb genomic interval on 'Chinese Spring' chromosome 1AL. Furthermore, two cosegregating KASP markers showed high polymorphisms among 130 Chinese wheat cultivars and could be used for marker-assisted selection. Because no other Yr genes for ASR that originated from common wheat have been detected on chromosome 1AL, YrXH-1AL is likely a novel gene that can be incorporated into modern breeding materials to develop wheat cultivars with enhanced stripe rust resistance.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , China , Mapeamento Cromossômico , Cromossomos , Resistência à Doença/genética , Exoma , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
20.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499149

RESUMO

The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae) with its genome abbreviated 'St' accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome. Therefore, investigating its chromosomes could provide some fundamental information required for subsequent studies of St genome evolution. Here, 24 wheat cDNA probes covering seven chromosome groups were mapped in P. libanotica to distinguish homoelogous chromosomes, and newly identified tandem repeats were performed to differentiate seven chromosome pairs. Using these probes, we investigated intraspecific population chromosomal polymorphism of P. libanotica. We found that (i) a duplicated fragment of the 5St long arm was inserted into the short arm of 2St; (ii) asymmetrical fluorescence in situ hybridization (FISH) hybridization signals among 2St, 5St, and 7St homologous chromosome pairs; and (iii) intraspecific population of polymorphism in P. libanotica. These observations established the integrated molecular karyotype of P. libanotica. Moreover, we suggested heterozygosity due to outcrossing habit and adaptation to the local climate of P. libanotica. Specifically, the generated STlib_96 and STlib_98 repeats showed no cross-hybridization signals with wheat chromosomes, suggesting that they are valuable for identifying alien chromosomes or introgressed fragments of wild relatives in wheat.


Assuntos
Cromossomos de Plantas , Triticum , Triticum/genética , Hibridização in Situ Fluorescente , Cromossomos de Plantas/genética , Poaceae/genética , Sequências de Repetição em Tandem/genética , Polimorfismo Genético , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA