Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(51): e2214703119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508666

RESUMO

Plants have evolved the ability to distinguish between symbiotic and pathogenic microbial signals. However, potentially cooperative plant-microbe interactions often abort due to incompatible signaling. The Nodulation Specificity 1 (NS1) locus in the legume Medicago truncatula blocks tissue invasion and root nodule induction by many strains of the nitrogen-fixing symbiont Sinorhizobium meliloti. Controlling this strain-specific nodulation blockade are two genes at the NS1 locus, designated NS1a and NS1b, which encode malectin-like leucine-rich repeat receptor kinases. Expression of NS1a and NS1b is induced upon inoculation by both compatible and incompatible Sinorhizobium strains and is dependent on host perception of bacterial nodulation (Nod) factors. Both presence/absence and sequence polymorphisms of the paired receptors contribute to the evolution and functional diversification of the NS1 locus. A bacterial gene, designated rns1, is required for activation of NS1-mediated nodulation restriction. rns1 encodes a type I-secreted protein and is present in approximately 50% of the nearly 250 sequenced S. meliloti strains but not found in over 60 sequenced strains from the closely related species Sinorhizobium medicae. S. meliloti strains lacking functional rns1 are able to evade NS1-mediated nodulation blockade.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Simbiose/genética , Genes Bacterianos , Especificidade da Espécie , Fixação de Nitrogênio
2.
PLoS Comput Biol ; 18(4): e1010021, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404937

RESUMO

Comparing SARS-CoV-2 infection-induced gene expression signatures to drug treatment-induced gene expression signatures is a promising bioinformatic tool to repurpose existing drugs against SARS-CoV-2. The general hypothesis of signature-based drug repurposing is that drugs with inverse similarity to a disease signature can reverse disease phenotype and thus be effective against it. However, in the case of viral infection diseases, like SARS-CoV-2, infected cells also activate adaptive, antiviral pathways, so that the relationship between effective drug and disease signature can be more ambiguous. To address this question, we analysed gene expression data from in vitro SARS-CoV-2 infected cell lines, and gene expression signatures of drugs showing anti-SARS-CoV-2 activity. Our extensive functional genomic analysis showed that both infection and treatment with in vitro effective drugs leads to activation of antiviral pathways like NFkB and JAK-STAT. Based on the similarity-and not inverse similarity-between drug and infection-induced gene expression signatures, we were able to predict the in vitro antiviral activity of drugs. We also identified SREBF1/2, key regulators of lipid metabolising enzymes, as the most activated transcription factors by several in vitro effective antiviral drugs. Using a fluorescently labeled cholesterol sensor, we showed that these drugs decrease the cholesterol levels of plasma-membrane. Supplementing drug-treated cells with cholesterol reversed the in vitro antiviral effect, suggesting the depleting plasma-membrane cholesterol plays a key role in virus inhibitory mechanism. Our results can help to more effectively repurpose approved drugs against SARS-CoV-2, and also highlights key mechanisms behind their antiviral effect.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Membrana Celular , Colesterol , Reposicionamento de Medicamentos/métodos , Humanos
3.
BMC Complement Med Ther ; 23(1): 138, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127611

RESUMO

BACKGROUND: Parallel to the growth of the oral healthcare market, there is a constantly increasing demand for natural products as well. Many customers prefer products that contain fewer toxic agents, therefore providing an environmentally friendly solution with the benefit of smaller risk to the user. Medieval and early modern medicinal knowledge might be useful when looking for natural, herbal-based components to develop modern products. Along with these considerations we created, tested, and compared an entirely natural mouthwash, named Herba Dei. METHODS: The manufacturing procedure was standardized, and the created tincture was evaluated by GC/MS analysis for active compounds, experimentally tested in cell-based cytotoxicity, salivary protein integrity, cell-free antioxidant activity, anti-bacterial and anti-viral assays, and compared with three market-leading mouthwashes. RESULTS: Our tincture did not show significant damage in the cytotoxicity assays to keratinocyte and Vero E6 cells and did not disrupt the low molecular weight salivary proteins. Its radical scavenging capacity surpassed that of two tested, partly natural, and synthetic mouthwashes, while its antibacterial activity was comparable to the tested products, or higher in the bacterial aerobic respiratory assay. The active compounds responsible for the effects include naturally occurring phenylpropanoids, terpenes, and terpenoids. Our mouthwash proved to be effective in vitro in lowering the copy number of SARS-CoV-2 in circumstances mimicking the salivary environment. CONCLUSIONS: The developed product might be a useful tool to impede the transmission and spread of SARS-CoV-2 in interpersonal contact and aerosol-generating conditions. Our mouthwash can help reduce the oral bacterial flora and has an antioxidant activity that facilitates wound healing and prevents adverse effects of smoke in the oral cavity.


Assuntos
COVID-19 , Antissépticos Bucais , Humanos , Antissépticos Bucais/efeitos adversos , SARS-CoV-2 , Antioxidantes , Boca/microbiologia , Terpenos
4.
Theor Appl Genet ; 125(7): 1565-74, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22801874

RESUMO

Agrobacteria are efficient plant pathogens. They are able to transform plant cells genetically resulting in abnormal cell proliferation. Cultivars of Vitis vinifera are highly susceptible to many virulent Agrobacterium strains but certain wild Vitis species, including Vitis amurensis have resistant genotypes. Studies of the molecular background of such natural resistance are of special importance, not only for practical benefits in agricultural practice but also for understanding the role of plant genes in the transformation process. Earlier, crown gall resistance from V. amurensis was introgressed into V. vinifera through interspecific breeding and it was shown to be inherited as a single and dominant Mendelian trait. To develop this research further, towards understanding underlying molecular mechanisms, a mapping population was established, and resistance-coupled molecular DNA markers were identified by three different approaches. First, RAPD makers linked to the resistance locus (Rcg1) were identified, and on the basis of their DNA sequences, we developed resistance-coupled SCAR markers. However, localization of these markers in the grapevine genome sequence failed due to their similarity to many repetitive regions. Next, using SSR markers of the grapevine reference linkage map, location of the resistance locus was established on linkage group 15 (LG15). Finally, this position was supported further by developing new chromosome-specific markers and by the construction of the genetic map of the region including nine loci in 29.1 cM. Our results show that the closest marker is located 3.3 cM from the Rcg1 locus that may correspond to 576 kb.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Loci Gênicos/genética , Doenças das Plantas/genética , Tumores de Planta/genética , Vitis/genética , Vitis/microbiologia , Agrobacterium/fisiologia , Sequência de Bases , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Genes de Plantas/genética , Marcadores Genéticos , Testes Genéticos , Repetições de Microssatélites/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Tumores de Planta/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Recombinação Genética , Vitis/imunologia
5.
Acta Biol Hung ; 63(1): 81-96, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22453802

RESUMO

Chemical and genetic differences of twenty taxa belonging to four Thymus species were studied in order to determine whether molecular characters and essential oil components could be used as taxonomic markers and to examine the correlation between them. Plant samples, representing different taxa and geographic regions, were collected from experimentally grown populations. Essential oil samples were analysed by GC/MS and cluster analysis of volatile composition resulted in segregation of thymol chemotypes from sesquiterpenic ones. Thymol was characteristic for all the populations of Thymus glabrescens and T. pannonicus as well as for certain taxa belonging to T. praecox and T. pulegioides. Sesquiterpenes occurred in only two taxa of T. glabrescens, in each sample of T. praecox and in three taxa of T. pulegioides. Plant samples were analysed by random amplified polymorphic DNA (RAPD). The obtained dendrogram revealed high gene diversity. The 13 primers resulted 114 polymorphic RAPD bands, and the average percentage of polymorphism was 80.8%. The RAPD dendogram showed separation neither at interspecific nor at interpopulational levels. Therefore, further specific molecular studies involving more taxa are suggested. Partial correlation have been found between molecular and chemical assessments.


Assuntos
Óleos Voláteis/análise , Óleos de Plantas/análise , Thymus (Planta)/química , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hungria , Técnica de Amplificação ao Acaso de DNA Polimórfico , Thymus (Planta)/genética
6.
Pharmaceuticals (Basel) ; 15(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35631447

RESUMO

We have previously identified methylene blue, a tricyclic phenothiazine dye approved for clinical use for the treatment of methemoglobinemia and for other medical applications as a small-molecule inhibitor of the protein-protein interaction (PPI) between the spike protein of the SARS-CoV-2 coronavirus and ACE2, the first critical step of the attachment and entry of this coronavirus responsible for the COVID-19 pandemic. Here, we show that methylene blue concentration dependently inhibits this PPI for the spike protein of the original strain as well as for those of variants of concern such as the D614G mutant and delta (B.1.617.2) with IC50 in the low micromolar range (1-5 µM). Methylene blue also showed promiscuous activity and inhibited several other PPIs of viral proteins (e.g., HCoV-NL63-ACE2, hepatitis C virus E-CD81) as well as others (e.g., IL-2-IL-2Rα) with similar potency. This nonspecificity notwithstanding, methylene blue inhibited the entry of pseudoviruses bearing the spike protein of SARS-CoV-2 in hACE2-expressing host cells, both for the original strain and the delta variant. It also blocked SARS-CoV-2 (B.1.5) virus replication in Vero E6 cells with an IC50 in the low micromolar range (1.7 µM) when assayed using quantitative PCR of the viral RNA. Thus, while it seems to be a promiscuous PPI inhibitor with low micromolar activity and has a relatively narrow therapeutic index, methylene blue inhibits entry and replication of SARS-CoV-2, including several of its mutant variants, and has potential as a possible inexpensive, broad-spectrum, orally bioactive small-molecule antiviral for the prevention and treatment of COVID-19.

7.
Front Pharmacol ; 13: 861295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846988

RESUMO

Background and purpose: The COVID-19 pandemic continues to pose challenges, especially with the emergence of new SARS-CoV-2 variants that are associated with higher infectivity and/or compromised protection afforded by the current vaccines. There is a high demand for additional preventive and therapeutic strategies effective against this changing virus. Repurposing of approved or clinically tested drugs can provide an immediate solution. Experimental Approach: We applied a novel computational approach to search among approved and commercially available drugs. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 cells, Vero cells stably overexpressing the human TMPRSS2 and ACE2 proteins as well as on reconstituted human nasal tissue using the predominant variant circulating in Europe in summer 2020, B.1.177 (D614G variant), and its emerging variants of concern; B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants. The effect of azelastine on viral replication was assessed by quantification of viral genomes by droplet digital PCR or qPCR. Key results: The computational approach identified major drug families, such as anti-infective, anti-inflammatory, anti-hypertensive, antihistamine, and neuroactive drugs. Based on its attractive safety profile and availability in nasal formulation, azelastine, a histamine 1 receptor-blocker was selected for experimental testing. Azelastine reduced the virus-induced cytopathic effect and SARS-CoV-2 copy numbers both in preventive and treatment settings upon infection of Vero cells with an EC50 of 2.2-6.5 µM. Comparable potency was observed with the alpha, beta and delta variants. Furthermore, five-fold dilution (containing 0.02% azelastine) of the commercially available nasal spray formulation was highly potent in inhibiting viral propagation in reconstituted human nasal tissue. Conclusion and Implications: Azelastine, an antihistamine available as nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization by SARS-CoV-2. A Phase 2 efficacy indicator study with azelastine-containing nasal spray that was designed based on the findings reported here has been concluded recently, confirming accelerated viral clearance in SARS-CoV-2 positive subjects.

8.
PLoS One ; 17(8): e0269880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913994

RESUMO

BACKGROUND: The mosquito Aedes koreicus (Edwards, 1917) is a recent invader on the European continent that was introduced to several new places since its first detection in 2008. Compared to other exotic Aedes mosquitoes with public health significance that invaded Europe during the last decades, this species' biology, behavior, and dispersal patterns were poorly investigated to date. METHODOLOGY/PRINCIPAL FINDINGS: To understand the species' population relationships and dispersal patterns within Europe, a fragment of the cytochrome oxidase I (COI or COX1) gene was sequenced from 130 mosquitoes, collected from five countries where the species has been introduced and/or established. Oxford Nanopore and Illumina sequencing techniques were combined to generate the first complete nuclear and mitochondrial genomic sequences of Ae. koreicus from the European region. The complete genome of Ae. koreicus is 879 Mb. COI haplotype analyses identified five major groups (altogether 31 different haplotypes) and revealed a large-scale dispersal pattern between European Ae. koreicus populations. Continuous admixture of populations from Belgium, Italy, and Hungary was highlighted, additionally, haplotype diversity and clustering indicate a separation of German sequences from other populations, pointing to an independent introduction of Ae. koreicus to Europe. Finally, a genetic expansion signal was identified, suggesting the species might be present in more locations than currently detected. CONCLUSIONS/SIGNIFICANCE: Our results highlight the importance of genetic research of invasive mosquitoes to understand general dispersal patterns, reveal main dispersal routes and form the baseline of future mitigation actions. The first complete genomic sequence also provides a significant leap in the general understanding of this species, opening the possibility for future genome-related studies, such as the detection of 'Single Nucleotide Polymorphism' markers. Considering its public health importance, it is crucial to further investigate the species' population genetic dynamic, including a larger sampling and additional genomic markers.


Assuntos
Aedes , Aedes/genética , Animais , Vetores de Doenças , Europa (Continente) , Variação Genética , Espécies Introduzidas , Mosquitos Vetores/genética
9.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34832893

RESUMO

The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone. Their antiviral effect was tested against SARS-CoV-2 in Vero E6 cells, using a cell viability assay and quantitative PCR of the viral RNA, confirming their micromolar inhibitory activity against viral replication. Interestingly, two of the parent apocarotenoids, bixin and ß-apo-8'carotenoic acid, exerted remarkable anti-SARS-CoV-2 activity. Mechanistic studies involved cathepsin L and B, as well as the main protease 3CLPro, and the results were rationalized by computational studies. Glycopeptide conjugates show dual inhibitory action, while apocarotenoids have mostly cathepsin B and L affinity. Since teicoplanin is a marketed antibiotic and the natural bixin is an approved, cheap and widely used red colorant food additive, these readily available compounds and their conjugates as potential antivirals are worthy of further exploration.

10.
Viruses ; 12(1)2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968613

RESUMO

The West Nile virus is endemic in multiple European countries and responsible for several epidemics throughout the European region. Its evolution into local or even widespread epidemics is driven by multiple factors from genetic diversification of the virus to environmental conditions. The year of 2018 was characterized by an extraordinary increase in human and animal cases in the Central-Eastern European region, including Hungary. In a collaborative effort, we summarized and analyzed the genetic and serologic data of WNV infections from multiple Hungarian public health institutions, universities, and private organizations. We compared human and veterinary serologic data, along with NS5 and NS3 gene sequence data through 2018. Wild birds were excellent indicator species for WNV circulation in each year. Our efforts resulted in documenting the presence of multiple phylogenetic subclades with Balkans and Western-European progenitor sequences of WNV circulating among human and animal populations in Hungary prior to and during the 2018 epidemic. Supported by our sequence and phylogenetic data, the epidemic of 2018 was not caused by recently introduced WNV strains. Unfortunately, Hungary has no country-wide integrated surveillance system which would enable the analysis of related conditions and provide a comprehensive epidemiological picture. The One Health approach, involving multiple institutions and experts, should be implemented in order to fully understand ecological background factors driving the evolution of future epidemics.


Assuntos
Cavalos/virologia , Filogenia , Proteínas Virais , Vírus do Nilo Ocidental , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Aves/virologia , Encefalite/virologia , Epidemias , Genes Virais , Falcões/virologia , Humanos , Hungria/epidemiologia , Saúde Única , Patologia Molecular , Estudos Soroepidemiológicos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA