RESUMO
Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.
Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/genética , Análise de Célula Única , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Efeito Espectador , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Ebolavirus/genética , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferons/genética , Interferons/metabolismo , Macaca mulatta , Macrófagos/metabolismo , Monócitos/metabolismo , Mielopoese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcriptoma/genéticaRESUMO
Adjuvants are often essential additions to vaccines that enhance the activation of innate immune cells, leading to more potent and protective T and B cell responses. Only a few vaccine adjuvants are currently used in approved vaccine formulations in the United States. Combinations of one or more adjuvants have the potential to increase the efficacy of existing and next-generation vaccines. In this study, we investigated how the nontoxic double mutant Escherichia coli heat-labile toxin R192G/L211A (dmLT), when combined with the TLR4 agonist monophosphoryl lipid A (MPL-A), impacted innate and adaptive immune responses to vaccination in mice. We found that the combination of dmLT and MPL-A induced an expansion of Ag-specific, multifaceted Th1/2/17 CD4 T cells higher than that explained by adding responses to either adjuvant alone. Furthermore, we observed more robust activation of primary mouse bone marrow-derived dendritic cells in the combination adjuvant-treated group via engagement of the canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex. This was marked by a multiplicative increase in the secretion of active IL-1ß that was independent of classical gasdermin D-mediated pyroptosis. Moreover, the combination adjuvant increased the production of the secondary messengers cAMP and PGE2 in dendritic cells. These results demonstrate how certain adjuvant combinations could be used to potentiate better vaccine responses to combat a variety of pathogens.
Assuntos
Inflamassomos , Vacinas , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Linfócitos T CD4-Positivos , Adjuvantes Imunológicos , Antígenos , Células DendríticasRESUMO
Helminths are distinct from microbial pathogens in both size and complexity, and are the likely evolutionary driving force for type 2 immunity. CD4+ helper T cells can both coordinate worm clearance and prevent immunopathology, but issues of T cell antigen specificity in the context of helminth-induced Th2 and T regulatory cell (Treg) responses have not been addressed. Herein, we generated a novel transgenic line of the gastrointestinal nematode Strongyloides ratti expressing the immunodominant CD4+ T cell epitope 2W1S as a fusion protein with green fluorescent protein (GFP) and FLAG peptide in order to track and study helminth-specific CD4+ T cells. C57BL/6 mice infected with this stable transgenic line (termed Hulk) underwent a dose-dependent expansion of activated CD44hiCD11ahi 2W1S-specific CD4+ T cells, preferentially in the lung parenchyma. Transcriptional profiling of 2W1S-specific CD4+ T cells isolated from mice infected with either Hulk or the enteric bacterial pathogen Salmonella expressing 2W1S revealed that pathogen context exerted a dominant influence over CD4+ T cell phenotype. Interestingly, Hulk-elicited 2W1S-specific CD4+ T cells exhibited both Th2 and Treg phenotypes and expressed high levels of the EGFR ligand amphiregulin, which differed greatly from the phenotype of 2W1S-specific CD4+ T cells elicited by 2W1S-expressing Salmonella. While immunization with 2W1S peptide did not enhance clearance of Hulk infection, immunization did increase total amphiregulin production as well as the number of amphiregulin-expressing CD3+ cells in the lung following Hulk infection. Altogether, this new model system elucidates effector as well as immunosuppressive and wound reparative roles of helminth-specific CD4+ T cells. This report establishes a new resource for studying the nature and function of helminth-specific T cells.
Assuntos
Epitopos de Linfócito T/genética , Estrongiloidíase/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Animais Geneticamente Modificados , Antígenos de Helmintos , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Strongyloides ratti/imunologiaRESUMO
The intracellular bacterial pathogen Salmonella is able to evade the immune system and persist within the host. In some cases, these persistent infections are asymptomatic for long periods and represent a significant public health hazard because the hosts are potential chronic carriers, yet the mechanisms that control persistence are incompletely understood. Using a mouse model of chronic typhoid fever combined with major histocompatibility complex (MHC) class II tetramers to interrogate endogenous, Salmonella-specific CD4+ helper T cells, we show that certain host microenvironments may favorably contribute to a pathogen's ability to persist in vivo We demonstrate that the environment in the hepatobiliary system may contribute to the persistence of Salmonella enterica subsp. enterica serovar Typhimurium through liver-resident immunoregulatory CD4+ helper T cells, alternatively activated macrophages, and impaired bactericidal activity. This contrasts with lymphoid organs, such as the spleen and mesenteric lymph nodes, where these same cells appear to have a greater capacity for bacterial killing, which may contribute to control of bacteria in these organs. We also found that, following an extended period of infection of more than 2 years, the liver appeared to be the only site that harbored Salmonella bacteria. This work establishes a potential role for nonlymphoid organ immunity in regulating chronic bacterial infections and provides further evidence for the hepatobiliary system as the site of chronic Salmonella infection.
Assuntos
Interações Hospedeiro-Patógeno/imunologia , Fígado/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Doença Crônica , Técnicas de Cocultura , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Vesícula Biliar/imunologia , Vesícula Biliar/microbiologia , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Fígado/microbiologia , Linfonodos/imunologia , Linfonodos/microbiologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Células RAW 264.7 , Salmonelose Animal/genética , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Análise de Célula Única , Baço/imunologia , Baço/microbiologia , Linfócitos T Auxiliares-Indutores/microbiologiaRESUMO
CD4(+) memory-phenotype T cells decline over time when generated in response to acute infections cleared by other components of the immune system. Therefore, it was of interest to assess the stability of CD4(+) T cells during a persistent Salmonella infection, which is typical of persistent phagocytic infections that are controlled by this lymphocyte subset. We found that CD4(+) T cells specific for Salmonella peptide:MHC class II (MHCII) ligands were numerically stable for >1 y after initial oral infection. This stability was associated with peptide:MHCII-driven proliferation by a small number of T cells in the secondary lymphoid organs that harbored bacteria. The persistent population consisted of multifunctional Th1 cells that induced PD-1 and became exhausted when transferred to hosts expressing the specific peptide:MHCII ligand in all parts of the body. Thus, persistent infection of phagocytes produced a CD4(+) T cell population that was stably maintained by low-level peptide:MHCII presentation.
Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Fragmentos de Peptídeos/metabolismo , Infecções por Salmonella/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/genética , Linfócitos T CD4-Positivos/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunofenotipagem/métodos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Infecções por Salmonella/metabolismo , Infecções por Salmonella/patologia , Salmonella typhi/imunologiaRESUMO
Salmonella infections affect millions worldwide and remain a significant cause of morbidity and mortality. It is known from mouse studies that CD4 T cells are essential mediators of immunity against Salmonella infection, yet it is not clear whether targeting CD4 T cell responses directly with peptide vaccines against Salmonella can be effective in combating infection. Additionally, it is not known whether T cell responses elicited against Salmonella secreted effector proteins can provide protective immunity against infection. In this study, we investigated both of these possibilities using prime-boost immunization of susceptible mice with a single CD4 T cell peptide epitope from Salmonella secreted effector protein I (SseI), a component of the Salmonella type III secretion system. This immunization conferred significant protection against lethal oral infection, equivalent to that conferred by whole heat-killed Salmonella bacteria. Surprisingly, a well-characterized T cell epitope from the flagellar protein FliC afforded no protection compared to immunization with an irrelevant control peptide. The protective response appeared to be most associated with polyfunctional CD4 T cells raised against the SseI peptide, since no antibodies were produced against any of the peptides and very little CD8 T cell response was observed. Overall, this study demonstrates that eliciting CD4 T cell responses against components of the Salmonella type III secretion system can contribute to protection against infection and should be considered in the design of future Salmonella subunit vaccines.
Assuntos
Sistemas de Secreção Bacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/imunologia , Vacinação/métodos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS) effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.
Assuntos
Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Células Th17/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Linfócitos T CD4-Positivos/microbiologia , Diferenciação Celular/imunologia , Epitopos/análise , Epitopos/imunologia , Flagelina/imunologia , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Células Th1/imunologia , Células Th1/microbiologia , Células Th17/microbiologiaRESUMO
BACKGROUND: rVSVΔG-ZEBOV-GP is the first approved vaccine with clinical efficacy against Ebola virus disease. Although a seroprotective threshold has not been defined for those at occupational risk of exposure, the current vaccine strategy is to attain a sustained high level of antibody titres. The aim of this trial was to explore the effects of delayed boosting upon both the height and duration of antibody titres following primary immunisation. METHODS: In this open-label phase 2 randomised controlled trial, we compared antibody titres at month 36 in participants who had received a homologous booster dose at month 18 following primary immunisation with those who had received no booster. From Oct 25, 2016, to Jan 29, 2020, healthy adults aged 18 years or older deemed at occupational risk of exposure to Ebola virus due to laboratory work, clinical duties, or travel to an active endemic region were recruited from four hospital clinics in the USA and one hospital clinic in Canada and received primary vaccination with 2×107 plaque-forming unit per mL of VSVΔG-ZEBOV-GP. 18 months later, individuals who consented and were still eligible were randomly assigned 1:1 to receive either a homologous booster dose or no booster. Study visits for safety and serial blood collections for antibody titres were done on enrolled participants at months 0, 1, 3, 6, 12, 18, 19, 24, 30, and 36. Through July, 2021, a web-based application was used for randomisation, including assignments with schedules for each of the five sites using mixed permuted blocks. The trial was not masked to participants or site staff. The primary endpoint was a comparison of geometric mean titres (GMTs) of anti-Ebola virus glycoprotein IgG antibody at month 36 (ie, 18 months after randomisation) for all randomly assigned participants who completed the 36 months of follow-up (primary analysis cohort). Investigators were aware of antibody titres from baseline (enrolment) through month 18 but were masked to summary data by randomisation group after month 18. This study is registered with ClinicalTrials.gov (NCT02788227). FINDINGS: Of the 248 participants who enrolled and received their primary immunisation, 114 proceeded to the randomisation step at month 18. The two randomisation groups were balanced: 57 participants (24 [42%] of whom were female; median age was 42 years [IQR 35-50]) were randomly assigned to the booster group and 57 (24 [42%] of whom were female; median age was 42 years [IQR 36-51]) to the no-booster group. Of those randomly assigned, 92 participants (45 in the booster group and 47 in the no-booster group) completed 36 months of follow-up. At 18 months after primary immunisation, GMTs in the no-booster group increased from a baseline of 10 ELISA units (EU)/mL (95% CI 7-14) to 1451 EU/mL (1118-1882); GMTs in the booster group increased from 9 EU/mL (6-16) to 1769 EU/mL (1348-2321). At month 19, GMTs were 31 408 EU/mL (23 181-42 554) for the booster group and 1406 EU/mL (1078-1833) for the no-booster group; at month 36, GMTs were 10 146 EU/mL (7960-12 933) for the booster group and 1240 EU/mL (984-1563) for the no-booster group. Accordingly, the geometric mean ratio (GMR) of antibody titres had increased almost 21-fold more in the booster versus no-booster group at 1 month after booster administration (GMR 20·6; 95% CI 18·2-23·0; p<0·0001) and was still over 7-fold higher at month 36 (GMR 7·8; 95% CI 5·5-10·2; p<0·0001). Consistent with previous reports of this vaccine's side-effects, transient mono-articular or oligo-articular arthritis was diagnosed in 18 (9%) of 207 primary vaccination recipients; after randomisation, arthritis was diagnosed in one (2%) of 57 participants in the no-booster group. No new cases of arthritis developed after booster administration. Four serious adverse events occurred following randomisation: one (epistaxis) in the booster group and three (gastrointestinal haemorrhage, prostate cancer, and tachyarrhythmia) in the no-booster group. None of the serious adverse events was judged attributable to the booster vaccination assignment. INTERPRETATION: In addition to no new safety concerns and in marked contrast to earlier trials evaluating short-term boosting, delaying a rVSVΔG-ZEBOV-GP booster until month 18 resulted in an increase in GMT that remained several-fold above the no-booster group GMT for at least 18 months. These findings could have implications for defining the optimal timing of booster doses as pre-exposure prophylaxis in populations at ongoing risk for Ebola virus exposure. FUNDING: The Division of Intramural Research and the Division of Clinical Research of the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health, Canadian Immunization Research Network through the Public Health Agency of Canada, Canadian Institutes of Health Research, and the US Defense Threat Reduction Agency.
RESUMO
This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.
Assuntos
COVID-19 , Pneumonia , Humanos , Animais , Cricetinae , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Enzima de Conversão de Angiotensina 2 , Tomografia por Emissão de Pósitrons , Mesocricetus , Progressão da DoençaRESUMO
Despite increasing evidence that uveitis is common and consequential in survivors of Ebola virus disease (EVD), the host-pathogen determinants of the clinical phenotype are undefined, including the pathogenetic role of persistent viral antigen, ocular tissue-specific immune responses, and histopathologic characterization. Absent sampling of human intraocular fluids and tissues, these questions might be investigated in animal models of disease; however, challenges intrinsic to the nonhuman primate model and the animal biosafety level 4 setting have historically limited inquiry. In a rhesus monkey survivor of experimental Ebola virus (EBOV) infection, we observed and documented the clinical, virologic, immunologic, and histopathologic features of severe uveitis. Here we show the clinical natural history, resultant ocular pathology, intraocular antigen-specific antibody detection, and persistent intraocular EBOV RNA detected long after clinical resolution. The association of persistent EBOV RNA as a potential driver of severe immunopathology has pathophysiologic implications for understanding, preventing, and mitigating vision-threatening uveitis in EVD survivors.
Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Uveíte , Animais , Humanos , Doença pelo Vírus Ebola/complicações , Ebolavirus/fisiologia , Macaca mulatta , Uveíte/complicações , Uveíte/diagnóstico , RNARESUMO
Non-typhoidal salmonellosis, caused by Salmonella enterica serovar Typhimurium is a common fecal-oral disease characterized by mild gastrointestinal distress resulting in diarrhea, chills, fever, abdominal cramps, head and body aches, nausea, and vomiting. Increasing incidences of antibiotic resistant invasive non-typhoidal Salmonella infections makes this a global threat requiring novel treatment strategies including next-generation vaccines. The goal of the current study was to formulate a novel vaccine platform against Salmonella infection that could be delivered orally. To accomplish this, we created a Salmonella-specific vaccine adjuvanted with Burkholderia pseudomallei outer membrane vesicles (OMVs). We show that adding OMVs to a heat-killed oral Salmonella vaccine (HKST + OMVs) protects against a lethal, oral challenge with Salmonella. Further, we show that opsonizing anti-Salmonella antibodies are induced in response to immunization and that CD4 T cells and B cells can be induced when OMVs are used as the oral adjuvant. This study represents a novel oral vaccine approach to combatting the increasing problem of invasive Salmonella infections.
RESUMO
Non-human primate (NHP) animal models are an integral part of the drug research and development process. For some biothreat pathogens, animal model challenge studies may offer the only possibility to evaluate medical countermeasure efficacy. A thorough understanding of host immune responses in such NHP models is therefore vital. However, applying antibody-based immune characterization techniques to NHP models requires extensive reagent development for species compatibility. In the case of studies involving high consequence pathogens, further optimization for use of inactivated samples may be required. Here, we describe the first optimized CO-Detection by indEXing (CODEX) multiplexed tissue imaging antibody panel for deep profiling of spatially resolved single-cell immune responses in rhesus macaques. This 21-marker panel is composed of a set of 18 antibodies that stratify major immune cell types along with a set three Ebola virus (EBOV)-specific antibodies. We validated these two sets of markers using immunohistochemistry and CODEX in fully inactivated Formalin-Fixed Paraffin-Embedded (FFPE) tissues from mock and EBOV challenged macaques respectively and provide an efficient framework for orthogonal validation of multiple antibody clones using CODEX multiplexed tissue imaging. We also provide the antibody clones and oligonucleotide tag sequences as a valuable resource for other researchers to recreate this reagent set for future studies of tissue immune responses to EBOV infection and other diseases.
Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Imunidade , Imuno-Histoquímica/métodos , Animais , Modelos Animais de Doenças , Doença pelo Vírus Ebola/diagnóstico por imagem , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Leucócitos/imunologia , Macaca mulatta , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodosRESUMO
Recent thymic emigrants are the youngest subset of peripheral T cells and their involvement in combating persistent bacterial infections has not been explored. Here, we hypothesized that CD4+ recent thymic emigrants are essential immune mediators during persistent Salmonella infection. To test this, we thymectomized adult mice either prior to, or during, persistent Salmonella infection. We found that thymic output is crucial in the formation of protective immune responses during the early formation of a Salmonella infection but is dispensable once persistent Salmonella infection is established. Further, we show that thymectomized mice demonstrate increased infection-associated mortality and bacterial burdens. Unexpectedly, numbers of Salmonella-specific CD4+ T cells were significantly increased in thymectomized mice compared to sham control mice. Lastly, we found that T cells from thymectomized mice may be impaired in producing the effector cytokine IL-17 at early time points of infection, compared to thymically intact mice. Together, these results imply a unique role for thymic output in the formation of immune responses against a persistent, enteric pathogen.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.
RESUMO
Salmonella infection causes morbidity and mortality throughout the world with the host immune response varying depending on whether the infection is acute and limited, or systemic and chronic. Additionally, Salmonella bacteria have evolved multiple mechanisms to avoid or subvert immunity to its own benefit and often the anatomical location of infection plays a role in both the immune response and bacterial fate. Here, we provide an overview of the interplay between the immune system and Salmonella, while discussing how different host and bacterial factors influence the outcome of infection.
Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Patógeno , Sistema Imunitário , Imunidade Inata , Salmonelose Animal/imunologia , Infecções por Salmonella/imunologia , Salmonella/imunologia , Animais , Humanos , ImunomodulaçãoRESUMO
Chagas disease is an emerging infectious disease in North America due to the immigration of individuals from endemic areas. The parasite has been transmitted to patients in non-endemic areas by blood transfusion and organ donation. Only six autochthonous cases have been described in humans in the United States yet the parasite is widespread among native mammals and resident triatomines are competent vectors. We attempted to determine if common southwestern triatomines, Triatoma protracta and Triatoma rubida have the potential to amplify the disease among human residents of the Southwest. The defecation patterns of the bugs were studied while feeding upon immobilized mice. Wild-caught adult male and female triatomines were observed feeding one to three times for a total of 71 observed feedings. T. rubida (15 bugs) appeared to be more aggressive, beginning feeding shortly after being placed in proximity to the host (within 2.3 min) whereas Triatoma protracta (12 bugs) was more deliberate, beginning feeding, on average, at 4 min. There were 40 observations of T. rubida, which fed for 27.9+/-13.6 min, whereas T. protracta fed for 22.8+/-7.5 min (n=31). Bugs were weighed pre- and post-feeding and T. rubida females ingested>T. protracta females>T. rubida males>T. protracta males. Weight gain did not correspond to the feeding duration. Defecation occurred on 42% of the feedings (30 of 71), and no bugs defecated on the host. The majority of the defecations occurred within 1 min of feeding, usually at the time of repletion. A large proportion of defecations occurred after the bugs left the vicinity of the host. All bugs and at least one fecal smear from each feeding bug were tested for Trypanosoma cruzi and 21% of T. protracta were positive by PCR (4 bugs and 1 feces). No T. rubida tested positive for T. cruzi. The bugs' defecation pattern is similar to that reported >50 years ago. Furthermore, there is no indication that they are becoming more domesticated in the desert Southwest. Thus, based on our observations, we do not believe that T. protracta and T. rubida pose an imminent risk for transmission of Chagas disease to residents of the southwestern United States.