RESUMO
Dengue fever is an infectious disease caused by the dengue virus (DENV) and is transmitted by mosquitoes in tropical and subtropical regions. The early detection method at a low cost is essential. To address this, we synthesized the isolated DENV aptamer for fabricating a rapid electrochemical biosensor on a Au interdigitated microgap electrode (AuIMGE). The DENV aptamers were generated using the SELEX (systemic evolution of ligands by exponential enrichment) method for binding to DENV surface envelope proteins. To reduce the manufacturing cost, unnecessary nucleotide sequences were excluded from the isolation process of the DENV aptamer. To reduce the detection time, the alternating current electrothermal flow (ACEF) technique was applied to the fabricated biosensor, which can shorten the detection time to 10 min. The performance of the biosensor was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In the diluted DENV protein solution, the linear range of the concentrations was from 1 pM to 1 µM and the LOD was 76.7 fM. Moreover, the proposed biosensor detected DENV in a diluted spiked sample at a linear range of 10-6 to 106 TCID50/mL, while the detection performance was proven with an LOD of 1.74 × 10-7 TCID50/mL along with high selectivity.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Vírus da Dengue , Animais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Eletrodos , Sequência de Bases , Ouro/químicaRESUMO
Microcystin-LR (MC-LR) is a hepatotoxin generated by the excessive proliferation of cyanobacteria, which is a threat to humans and wildlife. Therefore, rapid detection of MC-LR is an important challenge. This study describes a rapid electrochemical biosensor comprising nanozymes and aptamers. Alternating current electrothermal flow (ACEF) significantly reduced the MC-LR detection period to 10 min. We also used MnO2/MC-LR aptamer conjugates to improve the sensitivity to MC-LR detection. Here, MnO2 amplified the electrochemical signal and the aptamer showed high selectivity for MC-LR. Under the optimal conditions, the limit of detection (LOD) and selectivity in freshwater were detected using cyclic voltammetry and differential pulse voltammetry. As a result, an LOD of 3.36 pg mL-1 was observed in the linear concentration range of 10 pg mL-1 to 1 µg mL-1. This study quickly and sensitively detected MC-LR in a situation where it causes serious damage worldwide. In addition, the ACEF technology introduction is the first example of MC-LR detection, suggesting a wide range of possibilities for MC-LR biosensors.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Microcistinas , Compostos de Manganês , ÓxidosRESUMO
West Nile virus (WNV) is a mosquito-borne flavivirus that can cause West Nile fever, meningitis, encephalitis, and polio. Early detection of WNV is important to prevent infection spread on the field. To commercialize the electrochemical biosensor for WNV, rapid target detection with the cheap manufacture cost is essential. Here, we developed a fast-response electrochemical biosensor consisting of a truncated WNV aptamer/MXene (Ti3C2Tx) bilayer on round-type micro gap. To reduce the target binding time, the application of the alternating current electrothermal flow (ACEF) technology reduced the target detection time to within 10 min, providing a rapid biosensor platform. The MXene nanosheet improved electrochemical signal amplification, and the aptamer produced through systematic evolution of ligands by exponential enrichment process eliminated unnecessary base sequences via truncation and lowered the manufacturing cost. Under optimized conditions, the WNV limit of detection (LOD) and selectivity were measured using electrochemical measurement methods, including cyclic voltammetry and square wave voltammetry. The LOD was 2.57 pM for WNV diluted in deionized water and 1.06 pM for WNV diluted in 10% human serum. The fabricated electrochemical biosensor has high selectivity and allows rapid detection, suggesting the possibility of future application in the diagnosis of flaviviridae virus.
Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/diagnósticoRESUMO
Since 2010, DNA nanotechnology has advanced rapidly, helping overcome limitations in the use of DNA solely as genetic material. DNA nanotechnology has thus helped develop a new method for the construction of biosensors. Among bioprobe materials for biosensors, nucleic acids have shown several advantages. First, it has a complementary sequence for hybridizing the target gene. Second, DNA has various functionalities, such as DNAzymes, DNA junctions or aptamers, because of its unique folded structures with specific sequences. Third, functional groups, such as thiols, amines, or other fluorophores, can easily be introduced into DNA at the 5' or 3' end. Finally, DNA can easily be tailored by making junctions or origami structures; these unique structures extend the DNA arm and create a multi-functional bioprobe. Meanwhile, nanomaterials have also been used to advance plasmonic biosensor technologies. Nanomaterials provide various biosensing platforms with high sensitivity and selectivity. Several plasmonic biosensor types have been fabricated, such as surface plasmons, and Raman-based or metal-enhanced biosensors. Introducing DNA nanotechnology to plasmonic biosensors has brought in sight new horizons in the fields of biosensors and nanobiotechnology. This review discusses the recent progress of DNA nanotechnology-based plasmonic biosensors.