Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 298(2): 101557, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974059

RESUMO

It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remain unanswered. MqsRA is a TA system activated by various stresses, including oxidation. Here, we reconstituted the Escherichia coli ClpXP proteolytic machinery in vitro to monitor degradation of MqsRA TA components. We show that the MqsA antitoxin is a ClpXP proteolysis substrate, and that its degradation is regulated by both zinc occupancy in MqsA and MqsR toxin binding. Using NMR chemical shift perturbation mapping, we show that MqsA is targeted directly to ClpXP via the ClpX substrate targeting N-domain, and ClpX mutations that disrupt N-domain binding inhibit ClpXP-mediated degradation in vitro. Finally, we discovered that MqsA contains a cryptic N-domain recognition sequence that is accessible only in the absence of zinc and MqsR toxin, both of which stabilize the MqsA fold. This recognition sequence is transplantable and sufficient to target a fusion protein for degradation in vitro and in vivo. Based on these results, we propose a model in which stress selectively targets nascent and zinc-free MqsA, resulting in exposure of the ClpX recognition motif for ClpXP-mediated degradation.


Assuntos
Antitoxinas , Proteínas de Ligação a DNA , Endopeptidase Clp , Proteínas de Escherichia coli , Escherichia coli , Zinco , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredução , Peptídeo Hidrolases/metabolismo , Proteólise , Zinco/metabolismo
2.
J Biol Chem ; 296: 100162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33288679

RESUMO

MinD is a cell division ATPase in Escherichia coli that oscillates from pole to pole and regulates the spatial position of the cell division machinery. Together with MinC and MinE, the Min system restricts assembly of the FtsZ-ring to midcell, oscillating between the opposite ends of the cell and preventing FtsZ-ring misassembly at the poles. Here, we show that the ATP-dependent bacterial proteasome complex ClpXP degrades MinD in reconstituted degradation reactions in vitro and in vivo through direct recognition of the MinD N-terminal region. MinD degradation is enhanced during stationary phase, suggesting that ClpXP regulates levels of MinD in cells that are not actively dividing. ClpXP is a major regulator of growth phase-dependent proteins, and these results suggest that MinD levels are also controlled during stationary phase. In vitro, MinC and MinD are known to coassemble into linear polymers; therefore, we monitored copolymers assembled in vitro after incubation with ClpXP and observed that ClpXP promotes rapid MinCD copolymer destabilization and direct MinD degradation by ClpXP. The N terminus of MinD, including residue Arg 3, which is near the ATP-binding site in sequence, is critical for degradation by ClpXP. Together, these results demonstrate that ClpXP degradation modifies conformational assemblies of MinD in vitro and depresses Min function in vivo during periods of reduced proliferation.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Trifosfato de Adenosina/química , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Chaperonas Moleculares/química , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Clonagem Molecular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
J Bacteriol ; 201(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455283

RESUMO

The Min system in Escherichia coli, consisting of MinC, MinD, and MinE proteins, regulates division site selection by preventing assembly of the FtsZ-ring (Z-ring) and exhibits polar oscillation in vivo MinC antagonizes FtsZ polymerization, and in vivo, the cellular location of MinC is controlled by a direct association with MinD at the membrane. To further understand the interactions of MinC with FtsZ and MinD, we performed a mutagenesis screen to identify substitutions in minC that are associated with defects in cell division. We identified amino acids in both the N- and C-domains of MinC that are important for direct interactions with FtsZ and MinD in vitro, as well as mutations that modify the observed in vivo oscillation of green fluorescent protein (GFP)-MinC. Our results indicate that there are two distinct surface-exposed sites on MinC that are important for direct interactions with FtsZ, one at a cleft on the surface of the N-domain and a second on the C-domain that is adjacent to the MinD interaction site. Mutation of either of these sites leads to slower oscillation of GFP-MinC in vivo, although the MinC mutant proteins are still capable of a direct interaction with MinD in phospholipid recruitment assays. Furthermore, we demonstrate that interactions between FtsZ and both sites of MinC identified here are important for assembly of FtsZ-MinC-MinD complexes and that the conserved C-terminal end of FtsZ is not required for MinC-MinD complex formation with GTP-dependent FtsZ polymers.IMPORTANCE Bacterial cell division proceeds through the coordinated assembly of the FtsZ-ring, or Z-ring, at the site of division. Assembly of the Z-ring requires polymerization of FtsZ, which is regulated by several proteins in the cell. In Escherichia coli, the Min system, which contains MinC, MinD, and MinE proteins, exhibits polar oscillation and inhibits the assembly of FtsZ at nonseptal locations. Here, we identify regions on the surface of MinC that are important for contacting FtsZ and destabilizing FtsZ polymers.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Análise Mutacional de DNA , Proteínas de Escherichia coli/genética , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Mutagênese , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética
4.
Neurobiol Dis ; 69: 180-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965893

RESUMO

Parkinson's disease (PD), caused by selective loss of dopaminergic (DA) neurons in the substantia nigra, is the most common movement disorder with no cure or effective treatment. Exposure to the mitochondrial complex I inhibitor rotenone recapitulates pathological hallmarks of PD in rodents and selective loss of DA neurons in Drosophila. However, mechanisms underlying rotenone toxicity are not completely resolved. We previously reported a neuroprotective effect of human uncoupling protein 2 (hUCP2) against rotenone toxicity in adult fly DA neurons. In the current study, we show that increased mitochondrial fusion is protective from rotenone toxicity whereas increased fission sensitizes the neurons to rotenone-induced cell loss in vivo. In primary DA neurons, rotenone-induced mitochondrial fragmentation and lethality is attenuated as the result of hucp2 expression. To test the idea that the neuroprotective mechanism of hUCP2 involves modulation of mitochondrial dynamics, we detect preserved mitochondrial network, mobility and fusion events in hucp2 expressing DA neurons exposed to rotenone. hucp2 expression also increases intracellular cAMP levels. Thus, we hypothesize that cAMP-dependent protein kinase (PKA) might be an effector that mediates hUCP2-associated neuroprotection against rotenone. Indeed, PKA inhibitors block preserved mitochondrial integrity, movement and cell survival in hucp2 expressing DA neurons exposed to rotenone. Taken together, we present strong evidence identifying a hUCP2-PKA axis that controls mitochondrial dynamics and survival in DA neurons exposed to rotenone implicating a novel therapeutic strategy in modifying the progression of PD pathogenesis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Animais , Animais Geneticamente Modificados , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Drosophila , Olho/patologia , Olho/fisiopatologia , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Espaço Intracelular/metabolismo , Canais Iônicos/genética , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Transtornos Parkinsonianos/patologia , Fenótipo , Rotenona , Proteína Desacopladora 2
5.
Protein Sci ; 31(5): e4306, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481648

RESUMO

The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ amino acid sequence that links the conserved polymerization domain to a C-terminal protein interaction site was predicted to be intrinsically disordered and has been implicated in modulating spacing and architectural arrangements of FtsZ filaments. While the majority of cell division proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR) of FtsZ when FtsZ is polymerized. Here, we use NMR spectroscopy and reconstituted degradation reactions in vitro to demonstrate that this linker region is indeed disordered in solution and, further, that amino acids in the IDR of FtsZ enhance the degradation in polymer-guided interactions.


Assuntos
Proteínas de Escherichia coli , Peptídeo Hidrolases , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Elementos Facilitadores Genéticos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Peptídeo Hidrolases/metabolismo , Polímeros/metabolismo
6.
Biol Bull ; 238(2): 131-144, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32412839

RESUMO

Spiny dogfish (Squalus acanthias) and smoothhound (Mustelus canis) sharks in the northwest Atlantic undergo seasonal migrations driven by changes in water temperature. However, the recognized thermal habitats of these regional populations are poorly described. Here, we report the thermal range, catch frequency with bottom temperature, and catch frequency with time of year for both shark species in Narragansett Bay, Rhode Island. Additionally, we describe levels of two thermal stress response indicators, heat-shock protein 70 and trimethylamine N-oxide, with an experimental increase in water temperature from 15 °C to 21 °C. Our results show that S. acanthias can be found in this region year-round and co-occurs with M. canis from June to November. Further, adult S. acanthias routinely inhabits colder waters than M. canis (highest catch frequencies at bottom temperatures of 10 °C and 21 °C, respectively), but both exhibit similar upper thermal ranges in this region (bottom temperatures of 22-23 °C). Additionally, acute exposure to a 6 °C increase in water temperature for 72 hours leads to a nearly threefold increase in heat-shock protein 70 levels in S. acanthias but not M. canis. Therefore, these species display differences in their thermal tolerance and stress response with experimental exposure to 21 °C, a common summer temperature in Narragansett Bay. Further, in temperature-stressed S. acanthias there is no accumulation of trimethylamine N-oxide. At the whole-organism level, elasmobranchs' trimethylamine N-oxide regulatory capacity may be limited by other factors. Alternatively, elasmobranchs may not rely on trimethylamine N-oxide as a primary thermal protective mechanism under the conditions tested. Findings from this study are in contrast with previous research conducted with elasmobranch cells in vitro that showed accumulation of trimethylamine N-oxide after thermal stress and subsequent suppression of the heat-shock protein 70 response.


Assuntos
Tubarões , Animais , Ecossistema , Estações do Ano , Temperatura , Água
7.
PLoS One ; 12(1): e0170505, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28114338

RESUMO

During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317-383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Biopolímeros/metabolismo , Divisão Celular , Corantes Fluorescentes/metabolismo , Proteólise
8.
Front Mol Biosci ; 4: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523271

RESUMO

ClpX is a member of the Clp/Hsp100 family of ATP-dependent chaperones and partners with ClpP, a compartmentalized protease, to degrade protein substrates bearing specific recognition signals. ClpX targets specific proteins for degradation directly or with substrate-specific adaptor proteins. Native substrates of ClpXP include proteins that form large oligomeric assemblies, such as MuA, FtsZ, and Dps in Escherichia coli. To remodel large oligomeric substrates, ClpX utilizes multivalent targeting strategies and discriminates between assembled and unassembled substrate conformations. Although ClpX and ClpP are known to associate with protein aggregates in E. coli, a potential role for ClpXP in disaggregation remains poorly characterized. Here, we discuss strategies utilized by ClpX to recognize native and non-native protein aggregates and the mechanisms by which ClpX alone, and with ClpP, remodels the conformations of various aggregates. We show that ClpX promotes the disassembly and reactivation of aggregated Gfp-ssrA through specific substrate remodeling. In the presence of ClpP, ClpX promotes disassembly and degradation of aggregated substrates bearing specific ClpX recognition signals, including heat-aggregated Gfp-ssrA, as well as polymeric and heat-aggregated FtsZ, which is a native ClpXP substrate in E. coli. Finally, we show that ClpX is present in insoluble aggregates and prevents the accumulation of thermal FtsZ aggregates in vivo, suggesting that ClpXP participates in the management of aggregates bearing ClpX recognition signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA