Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biol Proced Online ; 22: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190011

RESUMO

BACKGROUND: Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. RESULTS: Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. CONCLUSIONS: Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.

2.
J Pharmacol Exp Ther ; 359(1): 62-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451409

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Glicerídeos/metabolismo , Hipotermia/induzido quimicamente , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Pirazóis/farmacologia , Rimonabanto
3.
J Biol Chem ; 289(26): 18569-81, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24847057

RESUMO

Hyaluronan, a major matrix molecule in epidermis, is often increased by stimuli that enhance keratinocyte proliferation and migration. We found that small amounts of UDP-sugars were released from keratinocytes and that UDP-glucose (UDP-Glc) added into keratinocyte cultures induced a specific, rapid induction of hyaluronan synthase 2 (HAS2), and an increase of hyaluronan synthesis. The up-regulation of HAS2 was associated with JAK2 and ERK1/2 activation, and specific Tyr(705) phosphorylation of transcription factor STAT3. Inhibition of JAK2, STAT3, or Gi-coupled receptors blocked the induction of HAS2 expression by UDP-Glc, the latter inhibitor suggesting that the signaling was triggered by the UDP-sugar receptor P2Y14. Chromatin immunoprecipitations demonstrated increased promoter binding of Tyr(P)(705)-STAT3 at the time of HAS2 induction. Interestingly, at the same time Ser(P)(727)-STAT3 binding to its response element regions in the HAS2 promoter was unchanged or decreased. UDP-Glc also stimulated keratinocyte migration, proliferation, and IL-8 expression, supporting a notion that UDP-Glc signals for epidermal inflammation, enhanced hyaluronan synthesis as an integral part of it.


Assuntos
Glucuronosiltransferase/genética , Ácido Hialurônico/biossíntese , Queratinócitos/metabolismo , Regiões Promotoras Genéticas , Receptores Purinérgicos P2/metabolismo , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Uridina Difosfato Glucose/metabolismo , Motivos de Aminoácidos , Movimento Celular , Glucuronosiltransferase/metabolismo , Humanos , Hialuronan Sintases , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Queratinócitos/enzimologia , Fosforilação , Ligação Proteica , Receptores Purinérgicos P2/genética , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Transdução de Sinais , Tirosina/química , Tirosina/genética , Regulação para Cima
4.
Bioorg Med Chem Lett ; 25(7): 1436-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25752982

RESUMO

Compound 12a (JZP-361) acted as a potent and reversible inhibitor of human recombinant MAGL (hMAGL, IC50=46 nM), and was found to have almost 150-fold higher selectivity over human recombinant fatty acid amide hydrolase (hFAAH, IC50=7.24 µM) and 35-fold higher selectivity over human α/ß-hydrolase-6 (hABHD6, IC50=1.79 µM). Additionally, compound 12a retained H1 antagonistic affinity (pA2=6.81) but did not show cannabinoid receptor activity, when tested at concentrations ⩽ 10 µM. Hence, compound 12a represents a novel dual-acting pharmacological tool possessing both MAGL-inhibitory and antihistaminergic activities.


Assuntos
Inibidores Enzimáticos/farmacologia , Loratadina/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Loratadina/síntese química , Loratadina/química , Modelos Moleculares , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 23(19): 6335-45, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344596

RESUMO

This article describes our systematic approach to exploring the utility of the 1,3,4-oxadiazol-2-one scaffold in the development of ABHD6 inhibitors. Compound 3-(3-aminobenzyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-169, 52) was identified as a potent inhibitor of hABHD6, with an IC50 value of 216 nM. This compound at 10 µM concentration did not inhibit any other endocannabinoid hydrolases, such as FAAH, MAGL and ABHD12, or bind to the cannabinoid receptors (CB1 and CB2). Moreover, in competitive activity-based protein profiling (ABPP), compound 52 (JZP-169) at 10 µM selectively targeted ABHD6 of the serine hydrolases of mouse brain membrane proteome. Reversibility studies indicated that compound 52 inhibited hABHD6 in an irreversible manner. Finally, homology modelling and molecular docking studies were used to gain insights into the binding of compound 52 to the active site of hABHD6.


Assuntos
Inibidores Enzimáticos/química , Monoacilglicerol Lipases/antagonistas & inibidores , Oxidiazóis/química , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/metabolismo , Oxidiazóis/metabolismo , Ligação Proteica , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Serina Proteases/química , Serina Proteases/metabolismo , Relação Estrutura-Atividade
6.
Mol Pharmacol ; 85(3): 510-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24368842

RESUMO

Considerable progress has been made in recent years in developing selective, potent monoacylglycerol lipase (MAGL) inhibitors. In the investigations of measures to inhibit this enzyme, less attention has been paid to improving our understanding of its catalytic mechanisms or substrate preferences. In our study, we used site-directed mutagenesis, and we show via versatile activity assays combined with molecular modeling that Cys242 and Tyr194, the two opposing amino acid residues in the catalytic cavity of MAGL, play important roles in determining the rate and the isomer preferences of monoacylglycerol hydrolysis. In contrast to wild-type enzymes that hydrolyzed 1- and 2-monoacylglycerols at similar rates, mutation of Cys242 to alanine caused a significant reduction in overall activity (maximal velocity, Vmax), particularly skewing the balanced hydrolysis of isomers to favor the 2-isomer. Molecular modeling studies indicate that this was caused by structural features unfavorable toward 1-isomers as well as impaired recognition of OH-groups in the glycerol moiety. Direct functional involvement of Cys242 in the catalysis was found unlikely due to the remote distance from the catalytic serine. Unlike C242A, mutation of Tyr194 did not bias the hydrolysis of 1- and 2-monoacylglycerols but significantly compromised overall activity. Finally, mutation of Cys242 was also found to impair inhibition of MAGL, especially that by fluorophosphonate derivatives (13- to 63-fold reduction in potency). Taken together, this study provides new experimental and modeling insights into the molecular mechanisms of MAGL-catalyzed hydrolysis of the primary endocannabinoid 2-arachidonoylglycerol and related monoacylglycerols.


Assuntos
Cisteína/genética , Inibidores Enzimáticos/metabolismo , Monoacilglicerol Lipases/genética , Monoglicerídeos/metabolismo , Ácidos Araquidônicos/genética , Ácidos Araquidônicos/metabolismo , Catálise , Linhagem Celular , Cisteína/metabolismo , Endocanabinoides/genética , Endocanabinoides/metabolismo , Glicerídeos/genética , Glicerídeos/metabolismo , Células HEK293 , Humanos , Hidrólise , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/genética , Mutação/genética
7.
Mol Pharmacol ; 86(5): 522-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25140003

RESUMO

The primary route of inactivation of the endocannabinoid 2-arachidonoylglycerol in the central nervous system is through enzymatic hydrolysis, mainly carried out by monoacylglycerol lipase (MAGL), along with a small contribution by the α/ß-hydrolase domain (ABHD) proteins ABHD6 and ABHD12. Recent methodological progress allowing kinetic monitoring of glycerol liberation has facilitated substrate profiling of the human endocannabinoid hydrolases, and these studies have revealed that the three enzymes have distinct monoacylglycerol substrate and isomer preferences. Here, we have extended this substrate profiling to cover four prostaglandin glycerol esters, namely, 15-deoxy-Δ(12,14)-prostaglandin J2-2-glycerol (15d-PGJ2-G), PGD2-G, PGE2-G, and PGF2 α-G. We found that the three enzymes hydrolyzed the tested substrates, albeit with distinct rates and preferences. Although human ABHD12 (hABHD12) showed only marginal activity toward PGE2-G, hABHD6 preferentially hydrolyzed PGD2-G, and human MAGL (hMAGL) robustly hydrolyzed all four. This was particularly intriguing for MAGL activity toward 15d-PGJ2-G whose hydrolysis rate rivaled that of the best monoacylglycerol substrates. Molecular modeling studies combined with kinetic analysis supported favorable interaction with the hMAGL active site. Long and short MAGL isoforms shared a similar substrate profile, and hMAGL hydrolyzed 15d-PGJ2-G also in living cells. The ability of 15d-PGJ2-G to activate the canonical nuclear factor erythroid 2-related factor (Nrf2) signaling pathway used by 15d-PGJ2 was assessed, and these studies revealed for the first time that 15d-PGJ2 and 15d-PGJ2-G similarly activated Nrf2 signaling as well as transcription of target genes of this pathway. Our study challenges previous claims regarding the ability of MAGL to catalyze PG-G hydrolysis and extend the MAGL substrate profile beyond the classic monoacylglycerols.


Assuntos
Ésteres/metabolismo , Glicerol/metabolismo , Monoacilglicerol Lipases/metabolismo , Prostaglandinas/metabolismo , Domínio Catalítico/fisiologia , Células Cultivadas , Endocanabinoides/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrolases/metabolismo , Hidrólise , Cinética , Monoglicerídeos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
8.
Bioorg Med Chem ; 22(23): 6694-6705, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25282655

RESUMO

The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8-10, while diverse leaving groups are tolerated for FAAH inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Amidas/farmacologia , Amidoidrolases/metabolismo , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperazina , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Relação Estrutura-Atividade
9.
J Lipid Res ; 53(11): 2413-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22969151

RESUMO

In the central nervous system, three enzymes belonging to the serine hydrolase family are thought to regulate the life time of the endocannabinoid 2-arachidonoylglycerol (C20:4) (2-AG). From these, monoacylglycerol lipase (MAGL) is well characterized and, on a quantitative basis, is the main 2-AG hydrolase. The postgenomic proteins α/ß-hydrolase domain containing (ABHD)6 and ABHD12 remain poorly characterized. By applying a sensitive fluorescent glycerol assay, we delineate the substrate preferences of human ABHD6 and ABHD12 in comparison with MAGL. We show that the three hydrolases are genuine MAG lipases; medium-chain saturated MAGs were the best substrates for hABHD6 and hMAGL, whereas hABHD12 preferred the 1 (3)- and 2-isomers of arachidonoylglycerol. Site-directed mutagenesis of the amino acid residues forming the postulated catalytic triad (ABHD6: S148-D278-H306, ABHD12: S246-D333-H372) abolished enzymatic activity as well as labeling with the active site serine-directed fluorophosphonate probe TAMRA-FP. However, the role of D278 and H306 as residues of the catalytic core of ABHD6 could not be verified because none of the mutants showed detectable expression. Inhibitor profiling revealed striking potency differences between hABHD6 and hABHD12, a finding that, when combined with the substrate profiling data, should facilitate further efforts toward the design of potent and selective inhibitors, especially those targeting hABHD12, which currently lacks such inhibitors.


Assuntos
Monoacilglicerol Lipases/metabolismo , Linhagem Celular , Humanos , Monoacilglicerol Lipases/genética , Monoglicerídeos/metabolismo , Mutagênese Sítio-Dirigida , Especificidade por Substrato
10.
BMC Pharmacol ; 12: 7, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22686545

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a signalling phospholipid with multiple biological functions, mainly mediated through specific G protein-coupled receptors. Aberrant LPA signalling is being increasingly implicated in the pathology of common human diseases, such as arteriosclerosis and cancer. The lifetime of the signalling pool of LPA is controlled by the equilibrium between synthesizing and degradative enzymatic activity. In the current study, we have characterized these enzymatic pathways in rat brain by pharmacologically manipulating the enzymatic machinery required for LPA degradation. RESULTS: In rat brain cryosections, the lifetime of bioactive LPA was found to be controlled by Mg2+-independent, N-ethylmaleimide-insensitive phosphatase activity, attributed to lipid phosphate phosphatases (LPPs). Pharmacological inhibition of this LPP activity amplified LPA1 receptor signalling, as revealed using functional autoradiography. Although two LPP inhibitors, sodium orthovanadate and propranolol, locally amplified receptor responses, they did not affect global brain LPA phosphatase activity (also attributed to Mg2+-independent, N-ethylmaleimide-insensitive phosphatases), as confirmed by Pi determination and by LC/MS/MS. Interestingly, the phosphate analog, aluminium fluoride (AlFx-) not only irreversibly inhibited LPP activity thereby potentiating LPA1 receptor responses, but also totally prevented LPA degradation, however this latter effect was not essential in order to observe AlFx--dependent potentiation of receptor signalling. CONCLUSIONS: We conclude that vanadate- and propranolol-sensitive LPP activity locally guards the signalling pool of LPA whereas the majority of brain LPA phosphatase activity is attributed to LPP-like enzymatic activity which, like LPP activity, is sensitive to AlFx- but resistant to the LPP inhibitors, vanadate and propranolol.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Propranolol/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Vanadatos/farmacologia , Compostos de Alumínio/farmacologia , Animais , Encéfalo/metabolismo , Fluoretos/farmacologia , Técnicas In Vitro , Lisofosfolipídeos/metabolismo , Masculino , Fosfatidato Fosfatase/antagonistas & inibidores , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
11.
Anal Biochem ; 399(1): 132-4, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20005861

RESUMO

Monoglyceride lipase (MGL) is a serine hydrolase that terminates the signaling of the primary endocannabinoid, 2-arachidonoyl glycerol (2-AG). Versatile high-throughput screening methods allowing the testing of MGL inhibitors are rare, thereby limiting the development and analysis of novel inhibitors. Here we describe an improved fluorescence-based technique that is capable of determining time- and dose-dependent inhibition of MGL with one or multiple binding sites and, at the same time, is capable of revealing the reversibility of inhibitor binding in a simple kinetic assay format. Known reference compounds as well as novel inhibitors, such as JZL184 and CAY10499, were evaluated for their MGL-binding properties and potency.


Assuntos
Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Monoacilglicerol Lipases/antagonistas & inibidores , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Cinética , Monoacilglicerol Lipases/metabolismo , Ligação Proteica
12.
Eur J Pharm Sci ; 149: 105321, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275951

RESUMO

De novo synthesis of fatty acids is essential to maintain intensive proliferation of cancer cells. Unlike normal cells that utilize food-derived circulating lipids for their fuel, cancer cells rely on heightened lipogenesis irrespective of exogenous lipid availability. Overexpression and activity of the multidomain enzyme fatty acid synthase (FASN) is crucial in supplying palmitate for protumorigenic activity. Therefore, FASN has been proposed as an attractive target for drug development. As an effort to set up an effective toolkit to study FASN inhibitors in human and rodent tissues, we validated activity-based protein profiling (ABPP) as a viable approach to unveil inhibitors targeting FASN thioesterase domain (FASN-TE). ABPP was combined with multi-well plate-assays designed for classical substrate-based FASN activity analysis together with powerful monitoring of cancer cell proliferation using IncuCyte® Live Cell Analyzing System. FASN-TE inhibitors were identified by competitive ABPP using HEK293 cell lysates in a screen of in-house compounds (200+) designed to target serine hydrolase (SH) family. The identified compounds were tested for their inhibitor potencies in vitro using a substrate-based activity assay monitoring FASN-dependent NADPH consumption in LNCaP prostate cancer cell preparation, in parallel with selected reference inhibitors, including orlistat (THL), GSK2194069, GSK837149A, platensimycin and BI-99179. LNCaP lysate supernatant was validated as a reliable native preparation to monitor FASN-dependent NADPH consumption as opposed to human glioma GAMG cells, whereas FASN enrichment was a prerequisite for accurate assays. While inhibitor pharmacology was identical between human prostate and glioma cancer cell FASN preparations, notable differences were revealed between human and rodent FASN preparations, especially for inhibitors targeting FASN-TE. ABPP combined with substrate-based assays facilitated identification of pan thiol-reactive inhibitor scaffolds, exemplified by the 1,2,4-thiadiazole moiety. Finally, selected compounds were evaluated for their antiproliferative efficacy in situ using GAMG cells. These studies revealed that while the tested compounds acted as potent FASN inhibitors in vitro, only a few showed antiproliferative efficacy in situ. To conclude, we describe a versatile toolkit to study FASN inhibitors in vitro and in situ using human cancer cells and reveal dramatic pharmacological differences between human and rodent FASN preparations.

13.
J Chem Neuroanat ; 35(2): 233-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18242056

RESUMO

[(35)S]GTPgammaS autoradiography represents a powerful functional approach to detect receptor-dependent G(i/o) protein activity in anatomically defined brain structures. Inherent to this technique, however, is the notable basal signal evident in several brain regions in the absence of receptor stimulation by exogenously added agonist. In the rat brain, much of this basal labelling derives from tonic activation of adenosine A(1) and lysophosphatidic acid LPA(1) receptors in the gray and white matter regions, respectively. Despite the elimination of the two receptor activities, prominent basal [(35)S]GTPgammaS labelling is still evident in discrete brain structures, possibly reflecting regional enrichment of G(i/o) and/or constitutive receptor activity or the presence of still unknown endogenous ligands activating their orphan receptors. Here, the anatomical distribution of the enhanced basal signal was systematically mapped in brain sections of 4-week-old male Wistar rats. Regions with prominent basal [(35)S]GTPgammaS labelling represented neuroanatomically distinct structures, in particular various thalamic and hypothalamic nuclei. For instance, the paraventricular thalamic nucleus, the bed nucleus of the stria terminalis and the subfornical organ were highly labelled, as were the periaqueductal gray and the nucleus of the solitary tract. Pre-treatment with N-ethylmaleimide (NEM), an alkylating agent preventing all known receptor-driven G protein activity in cryostat sections markedly decreased the basal binding in all examined regions. In preliminary screening, selective antagonists for various brain-enriched G(i/o)-coupled receptors failed to suppress the basal signal in any of the studied regions.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Tonsila do Cerebelo/anatomia & histologia , Animais , Mapeamento Encefálico/métodos , Hipotálamo/anatomia & histologia , Marcação por Isótopo , Bulbo/anatomia & histologia , Mesencéfalo/anatomia & histologia , Ponte/anatomia & histologia , Área Pré-Óptica/anatomia & histologia , Ratos , Medula Espinal/anatomia & histologia , Radioisótopos de Enxofre , Tálamo/anatomia & histologia
14.
ACS Med Chem Lett ; 9(12): 1269-1273, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613338

RESUMO

Screening of an in-house library of compounds identified 12-thiazole abietanes as a new class of reversible inhibitors of the human metabolic serine hydrolase. Further optimization of the first hit compound lead to the 2-methylthiazole derivative 18, with an IC50 value of 3.4 ± 0.2 µM and promising selectivity. ABHD16A has been highlighted as a new target for inflammation-mediated pain, although selective inhibitors of hABHD16A (human ABHD16A) have not yet been reported. Our study presents abietane-type diterpenoids as an attractive starting point for the design of selective ABHD16A inhibitors, which will contribute toward understanding the significance of hABHD16A inhibition in vivo.

15.
Mol Hum Reprod ; 13(12): 845-51, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17977902

RESUMO

Heterotrimeric G proteins play a key role in membrane-mediated cell-signalling and hormonal regulation. Our earlier studies gave evidence of G protein subunit Galpha(i2) being under hormonal regulation in human in vivo. In this study, we used immortalized human oviduct epithelial cell line OE-E6/E7 as a model to study the hormonal regulation of Galpha(i2). We aimed at clarifying whether estradiol or progesterone could individually regulate the expression of Galpha(i2) and its potential signalling partners. Furthermore, we aimed to investigate which sex hormone receptors could potentially mediate the gene regulation in OE-E6/E7 cell line. OE-E6/E7 cells were cultured for 5 days with different concentrations of estradiol or progesterone. Quantitative real-time polymerase chain reaction (Q-PCR) was performed using cDNA of the hormone-treated cells to reveal any changes in gene expression. The presence of potential receptor targets in these cells was studied using PCR. Our data clearly showed that low concentrations of estradiol up-regulated the expression of Galpha(i2) gene and down-regulated the expression of membrane progesterone receptor mPRalpha gene in OE-E6/E7 cell line. Progesterone had no significant effect on Galpha(i2) gene expression, but it caused up-regulation of mPRalpha gene expression. In conclusion, it appears that sex hormones regulate the expression of Galpha(i2) and mPRalpha genes in a reverse manner in OE-E6/E7 cells. Our results suggest that estrogen receptor ERbeta mediates the regulatory effects of estradiol in these cells.


Assuntos
Estradiol/farmacologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Progesterona/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores de Progesterona/genética , Western Blotting , Linhagem Celular , Tubas Uterinas/citologia , Tubas Uterinas/efeitos dos fármacos , Tubas Uterinas/metabolismo , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
BMC Neurosci ; 8: 26, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17430589

RESUMO

BACKGROUND: In the CNS, the heterotrimeric G protein Galphai2 is a minor Galpha subunit with restricted localization in the ventricular regions including the ependymal cilia. The localization of Galphai2 is conserved in cilia of different tissues, suggesting a particular role in ciliary function. Although studies with Galphai2-knockout mice have provided information on the role of this Galpha subunit in peripheral tissues, its role in the CNS is largely unknown. We used intracerebroventricular (icv) antisense administration to clarify the physiological role of Galphai2 in the ventricular system. RESULTS: High resolution MRI studies revealed that continuous icv-infusion of Galphai2-specific antisense oligonucleotide caused unilateral ventricular dilatation that was restricted to the antisense-receiving ventricle. Microscopic analysis demonstrated ependymal cell damage and loss of ependymal cilia. Attenuation of Galphai2 in ependymal cells was confirmed by immunohistochemistry. Ciliary beat frequency measurements on cultured ependymal cells indicated that antisense administration resulted in ciliary stasis. CONCLUSION: Our results establish that Galphai2 has an essential regulatory role in ciliary function and CSF homeostasis.


Assuntos
Ventrículos Cerebrais/fisiologia , Cílios/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Relógios Biológicos/genética , Células Cultivadas , Ventrículos Cerebrais/patologia , Líquido Cefalorraquidiano/fisiologia , Cílios/patologia , Dilatação Patológica/genética , Dilatação Patológica/patologia , Epêndima/patologia , Epêndima/fisiologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/biossíntese , Homeostase/genética , Injeções Intraventriculares , Masculino , Ratos , Ratos Wistar
17.
Chem Biol ; 13(8): 811-4, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16931330

RESUMO

Previous studies indicate that in brain tissue the endocannabinoid 2-AG is inactivated by monoglyceride lipase (MGL)-catalyzed hydrolysis, and a recent report has indicated that MGL activity could be specifically inhibited by URB754 . In the present study, URB754 failed to inhibit 2-AG hydrolysis in rat brain preparations. In addition, brain cryosections were employed to assess whether URB754 could facilitate the detection of 2-AG-stimulated G protein activity. Nevertheless, whereas pretreatment with PMSF readily allowed detection of 2-AG-stimulated G protein activity, URB754 was ineffective. In contrast to previous claims, brain FAAH activity was also resistant to URB754. Thus, in our hands URB754 was not able to block the endocannabinoid-hydrolyzing enzymes and cannot serve as a lead structure for future development of MGL-specific inhibitors.


Assuntos
Compostos de Anilina/farmacologia , Ácidos Araquidônicos/fisiologia , Benzoxazinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glicerídeos/fisiologia , Compostos de Anilina/química , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Compostos de Bifenilo/farmacologia , Catálise , Endocanabinoides , Proteínas de Ligação ao GTP/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/farmacologia , Hidrólise/efeitos dos fármacos , Lectinas , Lectinas Tipo C/química , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/farmacologia , Estrutura Molecular , Ratos , Ratos Wistar , Receptores de Superfície Celular , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
18.
Basic Clin Pharmacol Toxicol ; 101(5): 287-93, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17910610

RESUMO

The specific protein target of delta9-tetrahydrocannabinol (delta9-THC), the main active ingredient of Cannabis sativa L., was characterized from rat brain nearly 20 years ago, and several endogenous compounds and proteins comprising the endocannabinoid (eCB) system have since been discovered. It has become evident that the eCB system consists of at least two cannabinoid receptors (i.e. the CB1 and CB2 receptors), in addition to their endogenous ligands (the eCBs) and several enzymes involved in the biosynthesis and catabolism of the eCBs. The two well-established eCBs, N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), are produced by neurons on demand, act near their sites of synthesis and are effectively metabolized by fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGL), respectively. Inhibitors specifically targeting these enzymes could offer novel therapeutic approaches (e.g. for the treatment of pain and movement disorders). This MiniReview summarizes the literature concerning the potential therapeutic potential of FAAH and MGL inhibitors.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Inibidores Enzimáticos/uso terapêutico , Amidoidrolases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise , Monoacilglicerol Lipases/antagonistas & inibidores , Transtornos dos Movimentos/tratamento farmacológico , Dor/tratamento farmacológico
19.
Eur J Med Chem ; 136: 104-113, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28486208

RESUMO

MAGL is a potential therapeutic target for oncological and psychiatric diseases. Our objective was to develop a PET tracer for in vivo quantification of MAGL. We report [11C]MA-PB-1 as an irreversible MAGL inhibitor PET tracer. The in vitro inhibitory activity, ex vivo distribution, brain kinetics and specificity of [11C]MA-PB-1 binding were studied. Ex vivo biodistribution and microPET showed good brain uptake which could be blocked by pretreatment with both MA-PB-1 and a structurally non-related MAGL inhibitor MJN110. These initial results suggest that [11C]MA-PB-1 is a suitable tracer for in vivo imaging of MAGL.


Assuntos
Compostos de Benzil/farmacologia , Encéfalo/enzimologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/farmacologia , Animais , Compostos de Benzil/síntese química , Compostos de Benzil/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Macaca mulatta , Camundongos , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperazinas/síntese química , Piperazinas/química , Tomografia por Emissão de Pósitrons , Traçadores Radioativos , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Distribuição Tecidual
20.
Eur J Pharm Sci ; 107: 97-111, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28687529

RESUMO

Inhibition of Autotaxin (ATX) is a potential treatment strategy for several diseases, including tumors with elevated ATX-lysophosphatidic acid (LPA) signaling. Combining structure-based virtual screening together with hen egg-white Autotaxin (ewATX) activity assays enabled the discovery of novel small-molecule ATX inhibitors with a 2,4-dihydropyrano[2,3-c]pyrazole scaffold. These compounds are suggested to bind to the lipophilic pocket, leaving the active site unrestrained. Our most potent compound, (S)-6-amino-4-(3,4-dichlorophenyl)-3-(4-[(4-fluorobenzyl)oxy]phenyl)-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile [(S)-25], inhibited human ATX (hATX) with an IC50-value of 134nM. It also blocked ATX-evoked but not LPA-mediated A2058 melanoma cell migration. Noteworthy, molecular modeling correctly predicted the biologically active enantiomer of 2,4-dihydropyrano[2,3-c]pyrazoles, as verified by compound crystallization and activity assays. Our study established the ewATX activity assay as a valid and affordable tool in ATX inhibitor discovery. Overall, our study offers novel insights and approaches into design of novel ATX inhibitors targeting the hydrophobic pocket instead of the active site.


Assuntos
Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Galinhas , Colina/metabolismo , Simulação por Computador , Desenho de Fármacos , Clara de Ovo/química , Feminino , Humanos , Hidrólise , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA