Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(5): 7966-7982, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859916

RESUMO

Camera-based methods for optical coordinate metrology, such as digital fringe projection, rely on accurate calibration of the cameras in the system. Camera calibration is the process of determining the intrinsic and distortion parameters which define the camera model and relies on the localisation of targets (in this case, circular dots) within a set of calibration images. Localising these features with sub-pixel accuracy is key to providing high quality calibration results which in turn allows for high quality measurement results. A popular solution to the localisation of calibration features is provided in the OpenCV library. In this paper, we adopt a hybrid machine learning approach where an initial localisation is given by OpenCV which is then refined through a convolutional neural network based on the EfficientNet architecture. Our proposed localisation method is then compared with the OpenCV locations without refinement, and to an alternative refinement method based on traditional image processing. We show that under ideal imaging conditions, both refinement methods provide a reduction in the mean residual reprojection error of approximately 50%. However, in adverse imaging conditions, with high noise levels and specular reflection, we show that the traditional refinement degrades the results given by pure OpenCV, increasing the mean residual magnitude by 34%, which corresponds to 0.2 pixels. In contrast, the EfficientNet refinement is shown to be robust to the unideal conditions and is still able to reduce the mean residual magnitude by 50% compared to OpenCV. The EfficientNet feature localisation refinement, therefore, enables a greater range of viable imaging positions across the measurement volume. leading to more robust camera parameter estimations.

2.
Opt Express ; 24(8): 8997-9012, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137330

RESUMO

A method to obtain unambiguous surface height measurements using wavelength scanning interferometry with an improved repeatability, comparable to that obtainable using phase shifting interferometry, is reported. Rather than determining the conventional fringe frequency-derived z height directly, the method uses the frequency to resolve the fringe order ambiguity, and combine this information with the more accurate and repeatable fringe phase derived z height. A theoretical model to evaluate the method's performance in the presence of additive noise is derived and shown to be in good agreement with experiments. The measurement repeatability is improved by a factor of ten over that achieved when using frequency information alone, reaching the sub-nanometre range. Moreover, the z-axis non-linearity (bleed-through or ripple error) is reduced by a factor of ten. These order of magnitude improvements in measurement performance are demonstrated through a number of practical measurement examples.

3.
Appl Opt ; 55(20): 5332-40, 2016 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-27409307

RESUMO

A novel method to double the measurement range of wavelength scanning interferometery (WSI) is described. In WSI the measured optical path difference (OPD) is affected by a sign ambiguity, that is, from an interference signal it is not possible to distinguish whether the OPD is positive or negative. The sign ambiguity can be resolved by measuring an interference signal in quadrature. A method to obtain a quadrature interference signal for WSI is described, and a theoretical analysis of the advantages is reported. Simulations of the advantages of the technique and of signal errors due to nonideal quadrature are discussed. The analysis and simulation are supported by experimental measurements to show the improved performances.

4.
Appl Opt ; 54(30): 8872-7, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26560373

RESUMO

In this paper, we demonstrate, both numerically and experimentally, a method for the detection of defects on structured surfaces having optically unresolved features. The method makes use of synthetic reference data generated by an observational model that is able to simulate the response of the selected optical inspection system to the ideal structure, thereby providing an ideal measure of deviation from nominal geometry. The method addresses the high dynamic range challenge faced in highly parallel manufacturing by enabling the use of low resolution, wide field of view optical systems for defect detection on surfaces containing small features over large regions.

5.
Opt Lett ; 37(7): 1247-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466210

RESUMO

We present a new class of interferometer system that is capable of simultaneous measurement of absolute position and rotation in all six degrees of freedom (DOF) with nanometer precision. This novel capability is due to the employment of a system of interference fringes that is not periodic. One of the key strengths offered by this new approach is that the absolute position of the system can be determined with a single measurement, rather than by counting fringes during displacement from a known location. The availability of a simultaneous measurement of all six DOF eliminates many problems associated with conventional interferometry.

6.
Nanotechnology ; 22(6): 062001, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21212479

RESUMO

This review paper summarizes the European nanometrology landscape from a technical perspective. Dimensional and chemical nanometrology are discussed first as they underpin many of the developments in other areas of nanometrology. Applications for the measurement of thin film parameters are followed by two of the most widely relevant families of functional properties: measurement of mechanical and electrical properties at the nanoscale. Nanostructured materials and surfaces, which are seen as key materials areas having specific metrology challenges, are covered next. The final section describes biological nanometrology, which is perhaps the most interdisciplinary applications area, and presents unique challenges. Within each area, a review is provided of current status, the capabilities and limitations of current techniques and instruments, and future directions being driven by emerging industrial measurement requirements. Issues of traceability, standardization, national and international programmes, regulation and skills development will be discussed in a future paper.

7.
ACS Appl Mater Interfaces ; 9(7): 6560-6570, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28094997

RESUMO

Despite the advancement of additive manufacturing (AM)/3-dimensional (3D) printing, single-step fabrication of multifunctional parts using AM is limited. With the view of enabling multifunctional AM (MFAM), in this study, sintering of metal nanoparticles was performed to obtain conductivity for continuous line inkjet printing of electronics. This was achieved using a bespoke three-dimensional (3D) inkjet-printing machine, JETx, capable of printing a range of materials and utilizing different post processing procedures to print multilayered 3D structures in a single manufacturing step. Multiple layers of silver were printed from an ink containing silver nanoparticles (AgNPs) and infrared sintered using a swathe-by-swathe (SS) and layer-by-layer sintering (LS) regime. The differences in the heat profile for the SS and LS was observed to influence the coalescence of the AgNPs. Void percentage of both SS and LS samples was higher toward the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS tracks (13.6 ± 1 µΩ cm) was lower than the SS tracks (22.5 ± 1 µΩ cm). This study recommends the use of LS method to sinter the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM.

8.
Proc Math Phys Eng Sci ; 472(2191): 20160201, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27493569

RESUMO

Defects produced during selective laser sintering (SLS) are difficult to non-destructively detect after build completion without the use of X-ray-based methods. Overcoming this issue by assessing integrity on a layer-by-layer basis has become an area of significant interest for users of SLS apparatus. Optical coherence tomography (OCT) is used in this study to detect surface texture and sub-surface powder, which is un-melted/insufficiently sintered, is known to be a common cause of poor part integrity and would prevent the use of SLS where applications dictate assurance of defect-free parts. To demonstrate the capability of the instrument and associated data-processing algorithms, samples were built with graduated porosities which were embedded in fully dense regions in order to simulate defective regions. Simulated in situ measurements were then correlated with the process parameters used to generate variable density regions. Using this method, it is possible to detect loose powder and differentiate between densities of ±5% at a sub-surface depth of approximately 300 µm. In order to demonstrate the value of OCT as a surface-profiling technique, surface texture datasets are compared with focus variation microscopy. Comparable results are achieved after a spatial bandwidth- matching procedure.

9.
Micron ; 65: 69-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041833

RESUMO

Lithic microwear is a research field of prehistoric stone tool (lithic) analysis that has been developed with the aim to identify how stone tools were used. It has been shown that laser scanning confocal microscopy has the potential to be a useful quantitative tool in the study of prehistoric stone tool function. In this paper, two important lines of inquiry are investigated: (1) whether the texture of worn surfaces is constant under varying durations of tool use, and (2) the development of rapid objective data analysis protocols. This study reports on the attempt to further develop these areas of study and results in a better understanding of the complexities underlying the development of flexible analytical algorithms for surface analysis. The results show that when sampling is optimised, surface texture may be linked to contact material type, independent of use duration. Further research is needed to validate this finding and test an expanded range of contact materials. The use of automated analytical protocols has shown promise but is only reliable if sampling location and scale are defined. Results suggest that the sampling protocol reports on the degree of worn surface invasiveness, complicating the ability to investigate duration related textural characterisation.


Assuntos
Arqueologia/métodos , Microscopia Confocal/métodos , Estatística como Assunto/métodos , Fósseis , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA