Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 145(5): 1378-1388.e10, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987845

RESUMO

BACKGROUND: Staphylococcus aureus enterotoxin (SAE) superantigens are detected in nasal polyps (NPs), and SAE-specific IgE predicts asthma comorbidity in patients with NPs. However, roles of SAE superantigens and superantigen-related T-cell responses remain to be elucidated in nonasthmatic patients. OBJECTIVE: We investigated the presence of SAEs and SAE-related T-cell receptor (TCR) Vß (TCRVß) in nonasthmatic NPs, the phenotypes and functions of SAE-related T cells, and the clinical implication of SAE-related T-cell expansion. METHODS: Sinonasal tissue samples were obtained from patients with nonasthmatic chronic rhinosinusitis (CRS) with NPs (CRSwNP), patients with CRS without NPs (CRSsNP), and control subjects. SAE genes were detected by PCR, and the TCRVß distribution and T-cell phenotypes were examined by flow cytometry. RESULTS: Various SAE genes were detected not only in NPs but also in sinonasal mucosa from patients with CRSsNP and from controls. The S aureus enterotoxin I (SEI) gene was detected in all NPs. The fraction of SEI-responsive TCRVß+ (TCRVß1+ and Vß5.1+) CD4+ T cells was significantly increased only in NPs and the ethmoidal mucosa of patients with CRSwNP, indicating superantigen-induced expansion. The expanded TCRVß5.1+ CD4+ T cells expressed proliferation marker Ki-67 and the TH2 transcription factor GATA3. Furthermore, TCRVß5.1+ CD4+ T cells in NPs highly expressed TH2 markers, including IL-17RB, thymic stromal lymphoprotein receptor, and chemoattractant receptor-homologous molecule expressed on TH2 cells, with a potent TH2 cytokine-producing ability. Moreover, the expansion of TCRVß1+ or Vß5.1+ CD4+ T cells was associated with the Lund-Mackay computed tomography score, indicating disease extent. CONCLUSION: In nonasthmatic patients with CRSwNP, superantigen-related expansion of CD4+ T cells with TH2 differentiation was associated with the disease extent.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Enterotoxinas/imunologia , Pólipos Nasais/imunologia , Rinite/imunologia , Sinusite/imunologia , Superantígenos/imunologia , Adulto , Diferenciação Celular , Doença Crônica , DNA Bacteriano/análise , Enterotoxinas/genética , Feminino , Fator de Transcrição GATA3/imunologia , Humanos , Antígeno Ki-67/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Superantígenos/genética
2.
Lab Invest ; 96(2): 137-50, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26641068

RESUMO

WNTs and their downstream effectors regulate proliferation, death, and migration and cell fate decision. Deregulation of WNT signaling is associated with various cancers including GBM, which is the most malignant primary brain cancer. In this review, we will summarize the experimental evidence supporting oncogenic roles of WNT signaling in GBM and discuss current progress in the targeting of WNT signaling as an anti-cancer approach. In particular, we will focus on (1) genetic and epigenetic alterations that lead to aberrant WNT pathway activation in GBM, (2) WNT-mediated control of GBM stem cell maintenance and invasion, and (3) cross-talk between WNT and other signaling pathways in GBM. We will then review the discovery of agents that can inhibit WNT signaling in preclinical models and the current status of human clinical trials.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Via de Sinalização Wnt , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Humanos , Proteínas Wnt/antagonistas & inibidores
3.
Biochem Biophys Res Commun ; 443(2): 610-6, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333420

RESUMO

Metabolic syndrome describes a group of clinical features that together increase the incidence of coronary artery disease, stroke and type 2 diabetes. Insulin resistance is a major risk factor for developing metabolic syndrome. A chronic state of inflammation accompanies the accumulation of surplus lipids in adipose and liver tissue, frequently involved in insulin resistance. 8-Oxo-2'-deoxyguanosine (8-Oxo-dG) is a potent anti-inflammatory agent that inactivates both Rac1 and Rac2 which are critical to initiating the inflammatory responses in various cell types, including macrophages. In this study, we explored whether 8-Oxo-dG suppressed a series of systemic inflammatory cascades, resulting in the amelioration of typical features of metabolic syndrome in obese mice. The results demonstrate that 8-Oxo-dG effectively improved hyperglycemia, dyslipidemia and fatty liver changes in obese mice. The level of biochemical markers indicative of systemic inflammation were reduced in 8-Oxo-dG treated mice, whereas serum levels of adiponectin, a crucial factor associated with improved metabolic syndrome, were enhanced. Our results demonstrate that 8-Oxo-dG effectively disrupts the pathogenesis of insulin resistance and obesity-associated metabolic syndrome.


Assuntos
Citocinas/imunologia , Desoxiguanosina/análogos & derivados , Síndrome Metabólica/imunologia , Síndrome Metabólica/prevenção & controle , Obesidade/imunologia , Obesidade/prevenção & controle , 8-Hidroxi-2'-Desoxiguanosina , Animais , Desoxiguanosina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
4.
Mol Ther Oncol ; 32(1): 200777, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596297

RESUMO

Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells are a promising immunotherapy for solid cancers; however, their effectiveness against pancreatic cancer is limited by the immunosuppressive tumor microenvironment. In particular, low NK cell infiltration poses a major obstacle that reduces cytotoxicity. The current study aimed to enhance the tumor-homing capacity of CAR-NK cells by targeting the chemokine-chemokine receptor axis between NK and pancreatic cancer cells. To this end, data from a chemokine array and The Cancer Genome Atlas pan-cancer cohort were analyzed. Pancreatic cancer cells were found to secrete high levels of ligands for C-X-C motif receptor 1 (CXCR1) and CXCR2. Subsequently, we generated anti-mesothelin CAR-NK cells incorporating CXCR1 or CXCR2 and evaluated their tumor-killing abilities in 2D cancer cell co-culture and 3D tumor-mimetic organoid models. CAR-NK cells engineered with CXCR2 demonstrated enhanced tumor killing and strong infiltration of tumor sites. Collectively, these findings highlight the potential of CXCR2-augmented CAR-NK cells as a clinically relevant modality for effective pancreatic cancer treatment. By improving their infiltration and tumor-killing capabilities, these CXCR2-augmented CAR-NK cells have the potential to overcome the challenges posed by the immunosuppressive tumor microenvironment, providing improved therapeutic outcomes.

5.
Immunology ; 140(3): 288-300, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23746113

RESUMO

The naive T-cell pool in peripheral lymphoid tissues is fairly stable in terms of number, diversity and functional capabilities in spite of the absence of prominent stimuli. This stability is attributed to continuous tuning of the composition of the T-cell pool by various homeostatic signals. Despite extensive research into the link between signal transducer and activator of transcription 3 (Stat3) and T-cell survival, little is known about how Stat3 regulates homeostasis by maintaining the required naive T-cell population in peripheral lymphoid organs. We assessed whether the elimination of Stat3 in T cells limits T-cell survival. We demonstrated that the proportion and number of single-positive thymocytes as well as T cells in the spleen and lymph nodes were significantly decreased in the Stat3-deficient group as a result of the enhanced susceptibility of Stat3-deleted T lymphocytes to apoptosis. Importantly, expression of the anti-apoptotic Bcl-2 and Bcl-xL was markedly decreased in Stat3-deleted single-positive thymocytes and T lymphocytes, suggesting that Stat3 helps to maintain the T-cell pool in the resting condition by promoting the expression of Bcl-2 family genes. These findings suggest the importance of Stat3 in the integration of homeostatic cues for the maintenance and functional tuning of the T-cell pool.


Assuntos
Regulação da Expressão Gênica , Células Precursoras de Linfócitos T/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator de Transcrição STAT3/metabolismo , Linfócitos T/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Sobrevivência Celular/genética , Células Cultivadas , Homeostase , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
6.
Biochem Biophys Res Commun ; 435(4): 685-90, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23702480

RESUMO

Bone marrow stromal cell antigen 2 (BST-2) is a type II transmembrane protein that is known to be a therapeutic target in several types of cancer. However, despite its clinical importance, the roles of BST-2 expression have remained elusive. Here, we found that BST-2 expression is up-regulated in tamoxifen-resistant MCF-7 human breast cancer (TRM-7) cells, resulting in enhanced invasiveness and migration. Matrigel and wound healing assays also showed that overexpression of BST-2 increased invasion and migration in MCF-7 cells, whereas invasion and migration were decreased by the silencing of BST-2 in TRM-7 cells. In addition, B16F10 cells expressing BST-2 showed increased metastatic melanoma nodule growth in a lung metastasis mouse model. Furthermore, BST-2 expression and promoter activity were regulated by activated signal transducer and activator of transcription 3 (STAT3). Taken together, our results indicate that BST-2 is an important factor in the invasiveness and motility of tamoxifen-resistant breast cancer cells, and that its expression and activity are regulated by activated STAT3. Therefore, regulation of BST-2 is a potential therapeutic target for tamoxifen-resistant breast cancer.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Melanoma/patologia , Melanoma/secundário , Glicoproteínas de Membrana/metabolismo , Tamoxifeno/uso terapêutico , Animais , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/secundário , Melanoma/tratamento farmacológico , Camundongos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Resultado do Tratamento
7.
Eur Respir J ; 41(5): 1147-56, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22835616

RESUMO

Recently, statins have been shown to have anti-inflammatory effects on lung inflammatory diseases. However, the mechanisms of action of simvastatin in viral pneumonia have yet to be elucidated, although viral infection remains a considerable health threat. In this study, we hypothesised that simvastatin inhibits polyinosinic-polycytidylic acid (poly I:C)-induced airway inflammation, such as RANTES (regulated on activation, normal T-cell expressed and secreted) expression and inflammatory cell recruitment. In bronchial cells, the effect of simvastatin on poly I:C-induced RANTES expression and signal transducer and activator of transcription (STAT)3-mediated signal transduction was determined using an ELISA and short hairpin (sh)RNA system. In a poly I:C-induced pneumonia mouse model, immunological changes in the lungs after simvastatin inhalation, such as inflammatory cell recruitment and cytokine/chemokine release, were examined. In poly I:C-stimulated bronchial cells, RANTES secretion was increased by STAT3 activation, and simvastatin suppressed poly I:C-induced STAT3 activation, resulting in inhibition of RANTES expression. In BALB/c mice stimulated with inhaled poly I:C, RANTES expression and neutrophil infiltration into the airway were elevated. However, simvastatin treatment attenuated STAT3 activation, RANTES release and subsequent neutrophilia in the lungs. These findings suggest that simvastatin inhibits airway inflammation, but there are other mechanisms that need to be fully elucidated.


Assuntos
Quimiocina CCL5/metabolismo , Neutrófilos/efeitos dos fármacos , Pneumonia/induzido quimicamente , Poli I-C/efeitos adversos , Sinvastatina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Brônquios/citologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxiciclina/farmacologia , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/citologia , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inflamação , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
Bioorg Med Chem Lett ; 23(11): 3170-4, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23628332

RESUMO

Recently, obesity is a complex multifactorial chronic disease increasing the risk for type 2 diabetes, coronary heart disease and hypertension, and has become a major worldwide health problem. In the course of screening natural products employing 3T3-L1 cells as an in vitro system, the methanol extract of Idesia polycarpa Maxim. Fruits (Flacourtiaceae) significantly inhibited adipocyte differentiation by measuring lipid contents using oil red O staining. One new compound, 6-(oxymethyl)-2-hydroxyphenyl-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranoside (8), was isolated along with nine known compounds (1-7 and 9-10) from CHCl3 and n-BuOH fractions of the methanol extract of I. polycarpa fruits. Among them, idescarpin (1) with 1-hydroxy-6-oxo-2-cyclohexenecarboxylate moiety showed the most potent inhibitory activity on adipocyte differentiation with IC50 values of 23.2 µM. Idescarpin (1) dramatically suppressed the induction of C/EBPα expression, whereas it significantly increased the induction of PPARγ expression, supported by quantitative real time PCR and Western blot analysis. The down-regulation in mRNA levels of SREBP1c, SCD-1, and FAS by idescarpin (1) during adipocyte differentiation revealed that the inhibition of adipocyte differentiation was mediated by the regulation of lipogenesis. Taken together, we suggest that idescarpin (1) shows a great potential against obesity and diabetes though the anti-adipogenic activity and the up-regulation of PPARγ.


Assuntos
Fármacos Antiobesidade/química , Ácidos Cicloexanocarboxílicos/química , Dissacarídeos/química , Glucosídeos/química , Salicaceae/química , Células 3T3-L1 , Adipócitos/citologia , Adipogenia/efeitos dos fármacos , Animais , Fármacos Antiobesidade/isolamento & purificação , Fármacos Antiobesidade/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Ácidos Cicloexanocarboxílicos/isolamento & purificação , Ácidos Cicloexanocarboxílicos/farmacologia , Dissacarídeos/isolamento & purificação , Dissacarídeos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Frutas/química , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Conformação Molecular , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
9.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37788099

RESUMO

Glioblastoma (GBM) is the most lethal brain cancer with a dismal prognosis. Stem-like GBM cells (GSCs) are a major driver of GBM propagation and recurrence; thus, understanding the molecular mechanisms that promote GSCs may lead to effective therapeutic approaches. Through in vitro clonogenic growth-based assays, we determined mitogenic activities of the ligand molecules that are implicated in neural development. We have identified that semaphorin 3A (Sema3A), originally known as an axon guidance molecule in the CNS, promotes clonogenic growth of GBM cells but not normal neural progenitor cells (NPCs). Mechanistically, Sema3A binds to its receptor neuropilin-1 (NRP1) and facilitates an interaction between NRP1 and TGF-ß receptor 1 (TGF-ßR1), which in turn leads to activation of canonical TGF-ß signaling in both GSCs and NPCs. TGF-ß signaling enhances self-renewal and survival of GBM tumors through induction of key stem cell factors, but it evokes cytostatic responses in NPCs. Blockage of the Sema3A/NRP1 axis via shRNA-mediated knockdown of Sema3A or NRP1 impeded clonogenic growth and TGF-ß pathway activity in GSCs and inhibited tumor growth in vivo. Taken together, these findings suggest that the Sema3A/NRP1/TGF-ßR1 signaling axis is a critical regulator of GSC propagation and a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Glioblastoma/patologia , Neuropilina-1/genética , Neoplasias Encefálicas/patologia , Fator de Crescimento Transformador beta
10.
Biomaterials ; 296: 122087, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924663

RESUMO

The development of organoid culture technologies has triggered industrial interest in ex vivo drug test-guided clinical response prediction for precision cancer therapy. The three-dimensional culture encapsulated with basement membrane (BM) components is extremely important in establishing ex vivo organoids and drug sensitivity tests because the BM components confer essential structures resembling tumor histopathology. Although numerous studies have demonstrated three-dimensional culture-based drug screening methods, establishing a large-scale drug-screening platform with matrix-encapsulated tumor cells is challenging because the arrangement of microspots of a matrix-cell droplet onto each well of a microwell plate is inconsistent and difficult to standardize. In addition, relatively low scales and lack of reproducibility discourage the application of three-dimensional organoid-based drug screening data for precision treatment or drug discovery. To overcome these limitations, we manufactured an automated organospotter-integrated high-throughput organo-on-pillar (high-TOP) drug-screening platform. Our system is compatible with various extracellular matrices, including BM extract, Matrigel, collagen, and hydrogel. In addition, it can be readily utilized for high-content analyses by simply exchanging the bottom plates without disrupting the domes. Our system demonstrated considerable robustness, consistency, reproducibility, and biological relevancy in three-dimensional drug sensitivity analyses using Matrigel-encapsulated ovarian cancer cell lines. We also demonstrated proof-of-concept cases representing the clinical feasibility of high-TOP-assisted ex vivo drug tests linked to clinical chemo-response in ovarian cancer patients. In conclusion, our platform provides an automated and standardized method for ex vivo drug-sensitivity-guided clinical response prediction, suggesting effective chemotherapy regimens for patients with cancer.


Assuntos
Técnicas de Cultura de Células , Neoplasias Ovarianas , Feminino , Humanos , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Avaliação Pré-Clínica de Medicamentos/métodos , Descoberta de Drogas , Organoides , Neoplasias Ovarianas/patologia , Ensaios de Triagem em Larga Escala/métodos
11.
Neoplasia ; 39: 100894, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972629

RESUMO

Recent studies indicate that signaling molecules traditionally associated with central nervous system function play critical roles in cancer. Dopamine receptor signaling is implicated in various cancers including glioblastoma (GBM) and it is a recognized therapeutic target, as evidenced by recent clinical trials with a selective dopamine receptor D2 (DRD2) inhibitor ONC201. Understanding the molecular mechanism(s) of the dopamine receptor signaling will be critical for development of potent therapeutic options. Using the human GBM patient-derived tumors treated with dopamine receptor agonists and antagonists, we identified the proteins that interact with DRD2. DRD2 signaling promotes glioblastoma (GBM) stem-like cells and GBM growth by activating MET. In contrast, pharmacological inhibition of DRD2 induces DRD2-TRAIL receptor interaction and subsequent cell death. Thus, our findings demonstrate a molecular circuitry of oncogenic DRD2 signaling in which MET and TRAIL receptors, critical factors for tumor cell survival and cell death, respectively, govern GBM survival and death. Finally, tumor-derived dopamine and expression of dopamine biosynthesis enzymes in a subset of GBM may guide patient stratification for DRD2 targeting therapy.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Dopamina , Glioblastoma/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Transdução de Sinais , Receptores de Dopamina D2/metabolismo
12.
Adv Biol (Weinh) ; 6(12): e2200060, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116121

RESUMO

Homologous recombination deficiency (HRD) is a crucial driver of tumorigenesis by inducing impaired repair of double-stranded DNA breaks. Although HRD possibly triggers the production of numerous tumor neoantigens that sufficiently stimulate and activate various tumor-immune responses, a comprehensive understanding of the HRD-associated tumor microenvironment is elusive. To investigate the effect of HRD on the selective enrichment of transcriptomic signatures, 294 cases from The Cancer Genome Atlas-Ovarian Cancer project with both RNA-sequencing and SNP array data are analyzed. Differentially expressed gene analysis and network analysis are performed to identify HRD-specific signatures. Gene-sets associated with mitochondrial activation, including enhanced oxidative phosphorylation (OxPhos), are significantly enriched in the HRD-high group. Furthermore, a wide range of immune cell activation signatures is enriched in HRD-high cases of high-grade serous ovarian cancer (HGSOC). On further cell-type-specific analysis, M1-like macrophage genes are significantly enriched in HRD-high HGSOC cases, whereas M2-macrophage-related genes are not. The immune-response-associated genomic features, including tumor mutation rate, neoantigens, and tumor mutation burdens, correlated with HRD scores. In conclusion, the results of this study highlight the biological properties of HRD, including enhanced energy metabolism, increased tumor neoantigens and tumor mutation burdens, and consequent exacerbation of immune responses, particularly the enrichment of M1-like macrophages in HGSOC cases.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Transcriptoma/genética , Recombinação Homóloga/genética , Neoplasias Ovarianas/genética , Cistadenocarcinoma Seroso/genética , Microambiente Tumoral
13.
Cancers (Basel) ; 12(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120790

RESUMO

Diffusely infiltrating gliomas (DIGs) are difficult to completely resect and are associated with a high rate of tumor relapse and progression from low- to high-grade glioma. In particular, optimized short-term culture-enriching patient-derived glioma stem cells (GSCs) are essential for customizing the therapeutic strategy based on clinically feasible in vitro drug screening for a wide range of DIGs, owing to the high inter-tumoral heterogeneity. Herein, we constructed a novel high-throughput culture condition screening platform called 'GFSCAN', which evaluated the cellular growth rates of GSCs for each DIG sample in 132 serum-free combinations, using 13 previously reported growth factors closely associated with glioma aggressiveness. In total, 72 patient-derived GSCs with available genomic profiles were tested in GFSCAN to explore the association between cellular growth rates in specific growth factor combinations and genomic/molecular backgrounds, including isocitrate dehydrogenase 1 (IDH1) mutation, chromosome arm 1p and 19q co-deletion, ATRX chromatin remodeler alteration, and transcriptional subtype. GSCs were clustered according to the dependency on epidermal growth factor and basic fibroblast growth factor (E&F), and isocitrate dehydrogenase 1 (IDH1) wild-type GSCs showed higher E&F dependencies than IDH1 mutant GSCs. More importantly, we elucidated optimal combinations for IDH1 mutant glioblastoma and lower grade glioma GSCs with low dependencies on E&F, which could be an aid in clinical decision-making for these DIGs. Thus, we demonstrated the utility of GFSCAN in personalizing in vitro cultivation to nominate personalized therapeutic options, in a clinically relevant time frame, for individual DIG patients, where standard clinical options have been exhausted.

14.
Sci Rep ; 10(1): 4904, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184452

RESUMO

Axitinib, small molecule tyrosine kinase inhibitor, demonstrates anti-cancer activity for various solid tumors. We investigated anti-cancer effect of axitinib in epithelial ovarian cancer (EOC). We treated EOC cells (A2780, HeyA8, RMG1, and HeyA8-MDR) with axitinib to evaluate its effects on cell viabilty, apoptosis and migration. Western blots were performed to assess VEGFR2, ERK, and AKT levels, and ELISA and FACS to evaluate apoptosis according to axitinib treatment. In addition, in vivo experiments in xenografts using A2780, RMG1, and HeyA8-MDR cell lines were performed. We repeated the experiment with patient-derived xenograft models (PDX) of EOC. Axitinib significantly inhibited cell survival and migration, and increased apoptosis in EOC cells. The expression of VEGFR2 and phosphorylation of AKT and ERK in A2780, RMG1, and HeyA8 were decreased with axitinib treatment in dose-dependent manner, but not in HeyA8-MDR. In in vivo experiments, axitinib significantly decreased tumor weight in xenograft models of drug-sensitive (A2780), and clear cell carcinoma (RMG1) and PDX models for platinum sensitive EOC compared to control, but was not effective in drug-resistant cell line (HeyA8-MDR) or heavily pretreated refractory PDX model. Axitinib showed significant anti-cancer effects in drug-sensitive or clear cell EOC cells via inhibition of VEGFR signals associated with cell proliferation, apoptosis and migration, but not in drug-resistant cells.


Assuntos
Axitinibe/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Exp Mol Med ; 51(12): 1-11, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811117

RESUMO

Glioblastoma (GBM) is the most lethal primary brain tumor with few treatment options. The survival of glioma-initiating cells (GICs) is one of the major factors contributing to treatment failure. GICs frequently produce and respond to their own growth factors that support cell proliferation and survival. In this study, we aimed to identify critical autocrine factors mediating GIC survival and to evaluate the anti-GBM effect of antagonizing these factors. Proteomic analysis was performed using conditioned media from two different patient-derived GBM tumor spheres under a growth factor-depleted status. Then, the antitumor effects of inhibiting an identified autocrine factor were evaluated by bioinformatic analysis and molecular validation. Proteins secreted by sphere-forming GICs promote cell proliferation/survival and detoxify reactive oxygen species (ROS). Among these proteins, we focused on midkine (MDK) as a clinically significant and pathologically relevant autocrine factor. Antagonizing MDK reduced the survival of GBM tumor spheres through the promotion of cell cycle arrest and the consequent apoptotic cell death caused by oxidative stress-induced DNA damage. We also identified PCBP4, a novel molecular predictor of resistance to anti-MDK treatment. Collectively, our results indicate that MDK inhibition is an important therapeutic option by suppressing GIC survival through the induction of ROS-mediated cell cycle arrest and apoptosis.


Assuntos
Sistema Nervoso Central/metabolismo , Glioblastoma/metabolismo , Midkina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose/genética , Apoptose/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Biologia Computacional , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos , Técnicas In Vitro , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA
16.
J Exp Med ; 216(5): 1120-1134, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30898893

RESUMO

Glioblastoma (GBM) is the most malignant brain tumor with profound genomic alterations. Tumor suppressor genes regulate multiple signaling networks that restrict cellular proliferation and present barriers to malignant transformation. While bona fide tumor suppressors such as PTEN and TP53 often undergo inactivation due to mutations, there are several genes for which genomic deletion is the primary route for tumor progression. To functionally identify putative tumor suppressors in GBM, we employed in vivo RNAi screening using patient-derived xenograft models. Here, we identified PIP4K2A, whose functional role and clinical relevance remain unexplored in GBM. We discovered that PIP4K2A negatively regulates phosphoinositide 3-kinase (PI3K) signaling via p85/p110 component degradation in PTEN-deficient GBMs and specifically targets p85 for proteasome-mediated degradation. Overexpression of PIP4K2A suppressed cellular and clonogenic growth in vitro and impeded tumor growth in vivo. Our results unravel a novel tumor-suppressive role of PIP4K2A for the first time and support the feasibility of combining oncogenomics with in vivo RNAi screen.


Assuntos
Neoplasias Encefálicas/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Glioblastoma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Proliferação de Células/genética , Células Cultivadas , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Feminino , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Interferência de RNA , Transdução Genética , Carga Tumoral/genética
17.
Neuro Oncol ; 21(2): 222-233, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29939324

RESUMO

BACKGROUND: Cancer is a complex disease with profound genomic alterations and extensive heterogeneity. Recent studies on large-scale genomics have shed light on the impact of core oncogenic pathways, which are frequently dysregulated in a wide spectrum of cancer types. Aberrant activation of the hepatocyte growth factor (HGF) signaling axis has been associated with promoting various oncogenic programs during tumor initiation, progression, and treatment resistance. As a result, HGF-targeted therapy has emerged as an attractive therapeutic approach. However, recent clinical trials involving HGF-targeted therapies have demonstrated rather disappointing results. Thus, an alternative, in-depth assessment of new patient stratification is necessary to shift the current clinical course. METHODS: To address such challenges, we have evaluated the therapeutic efficacy of YYB-101, an HGF-neutralizing antibody, in a series of primary glioblastoma stem cells (GSCs) both in vitro and in vivo. Furthermore, we performed genome and transcriptome analysis to determine genetic and molecular traits that exhibit therapeutic susceptibility to HGF-mediated therapy. RESULTS: We have identified several differentially expressed genes, including MET, KDR, and SOX3, which are associated with tumor invasiveness, malignancy, and unfavorable prognosis in glioblastoma patients. We also demonstrated the HGF-MET signaling axis as a key molecular determinant in GSC invasion, and we discovered that a significant association in HGF expression existed between mesenchymal phenotype and immune cell recruitment. CONCLUSIONS: Upregulation of MET and mesenchymal cellular state are essential in generating HGF-mediated therapeutic responses. Our results provide an important framework for evaluating HGF-targeted therapy in future clinical settings.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Glioblastoma/tratamento farmacológico , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Transcriptoma , Animais , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenótipo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Genome Biol ; 20(1): 253, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771620

RESUMO

BACKGROUND: Gynecologic malignancy is one of the leading causes of mortality in female adults worldwide. Comprehensive genomic analysis has revealed a list of molecular aberrations that are essential to tumorigenesis, progression, and metastasis of gynecologic tumors. However, targeting such alterations has frequently led to treatment failures due to underlying genomic complexity and simultaneous activation of various tumor cell survival pathway molecules. A compilation of molecular characterization of tumors with pharmacological drug response is the next step toward clinical application of patient-tailored treatment regimens. RESULTS: Toward this goal, we establish a library of 139 gynecologic tumors including epithelial ovarian cancers (EOCs), cervical, endometrial tumors, and uterine sarcomas that are genomically and/or pharmacologically annotated and explore dynamic pharmacogenomic associations against 37 molecularly targeted drugs. We discover lineage-specific drug sensitivities based on subcategorization of gynecologic tumors and identify TP53 mutation as a molecular determinant that elicits therapeutic response to poly (ADP-Ribose) polymerase (PARP) inhibitor. We further identify transcriptome expression of inhibitor of DNA biding 2 (ID2) as a potential predictive biomarker for treatment response to olaparib. CONCLUSIONS: Together, our results demonstrate the potential utility of rapid drug screening combined with genomic profiling for precision treatment of gynecologic cancers.


Assuntos
Neoplasias dos Genitais Femininos/genética , Testes Farmacogenômicos , Medicina de Precisão , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Feminino , Neoplasias dos Genitais Femininos/tratamento farmacológico , Humanos
19.
Nat Genet ; 50(10): 1399-1411, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30262818

RESUMO

Outcomes of anticancer therapy vary dramatically among patients due to diverse genetic and molecular backgrounds, highlighting extensive intertumoral heterogeneity. The fundamental tenet of precision oncology defines molecular characterization of tumors to guide optimal patient-tailored therapy. Towards this goal, we have established a compilation of pharmacological landscapes of 462 patient-derived tumor cells (PDCs) across 14 cancer types, together with genomic and transcriptomic profiling in 385 of these tumors. Compared with the traditional long-term cultured cancer cell line models, PDCs recapitulate the molecular properties and biology of the diseases more precisely. Here, we provide insights into dynamic pharmacogenomic associations, including molecular determinants that elicit therapeutic resistance to EGFR inhibitors, and the potential repurposing of ibrutinib (currently used in hematological malignancies) for EGFR-specific therapy in gliomas. Lastly, we present a potential implementation of PDC-derived drug sensitivities for the prediction of clinical response to targeted therapeutics using retrospective clinical studies.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacogenética/métodos , Medicina de Precisão/métodos , Antineoplásicos/classificação , Antineoplásicos/isolamento & purificação , Biomarcadores Farmacológicos/análise , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Ensaios de Seleção de Medicamentos Antitumorais , Estudos de Viabilidade , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Oncologia/métodos , Neoplasias/patologia , Panobinostat/uso terapêutico , Assistência Centrada no Paciente/métodos , Cultura Primária de Células/métodos , Células Tumorais Cultivadas
20.
Nat Genet ; 49(4): 594-599, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263318

RESUMO

Precision medicine in cancer proposes that genomic characterization of tumors can inform personalized targeted therapies. However, this proposition is complicated by spatial and temporal heterogeneity. Here we study genomic and expression profiles across 127 multisector or longitudinal specimens from 52 individuals with glioblastoma (GBM). Using bulk and single-cell data, we find that samples from the same tumor mass share genomic and expression signatures, whereas geographically separated, multifocal tumors and/or long-term recurrent tumors are seeded from different clones. Chemical screening of patient-derived glioma cells (PDCs) shows that therapeutic response is associated with genetic similarity, and multifocal tumors that are enriched with PIK3CA mutations have a heterogeneous drug-response pattern. We show that targeting truncal events is more efficacious than targeting private events in reducing the tumor burden. In summary, this work demonstrates that evolutionary inference from integrated genomic analysis in multisector biopsies can inform targeted therapeutic interventions for patients with GBM.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Genômica/métodos , Humanos , Mutação/genética , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinases/genética , Medicina de Precisão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA