Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2400930, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940323

RESUMO

Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high-performance thermal management can be achieved using these eco-friendly methods, they are limited by daily temperature fluctuations and seasonal changes because of single-mode actuation. Herein, reversible solar heating and radiative cooling devices formed via the mechanically guided assembly of 3D architectures are demonstrated. The fabricated devices exhibit the following properties: i) The devices reversibly change between solar heating and radiative cooling under uniaxial strain, called dual-mode actuation. ii) The 3D platforms in the devices can use rigid/soft materials for functional layers owing to the optimized designs. iii) The devices can be used for dual-mode thermal management on a macro/microscale. The devices use black paint-coated polyimide (PI) films as solar absorbers with multilayered films comprising thin layers of polydimethylsiloxane/silver/PI, achieving heating and cooling temperatures of 59.5 and -11.9 °C, respectively. Moreover, mode changes according to the angle of the 3D structures are demonstrated and the heating/cooling performance with skin, glass, steel, aluminum, copper, and PI substrates is investigated.

2.
PNAS Nexus ; 3(3): pgae110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516273

RESUMO

Recent advances in passive flying systems inspired by wind-dispersed seeds contribute to increasing interest in their use for remote sensing applications across large spatial domains in the Lagrangian frame of reference. These concepts create possibilities for developing and studying structures with performance characteristics and operating mechanisms that lie beyond those found in nature. Here, we demonstrate a hybrid flier system, fabricated through a process of controlled buckling, to yield unusual geometries optimized for flight. Specifically, these constructs simultaneously exploit distinct fluid phenomena, including separated vortex rings from features that resemble those of dandelion seeds and the leading-edge vortices derived from behaviors of maple seeds. Advanced experimental measurements and computational simulations of the aerodynamics and induced flow physics of these hybrid fliers establish a concise, scalable analytical framework for understanding their flight mechanisms. Demonstrations with functional payloads in various forms, including bioresorbable, colorimetric, gas-sensing, and light-emitting platforms, illustrate examples with diverse capabilities in sensing and tracking.

3.
Polymers (Basel) ; 13(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672839

RESUMO

Although various two-dimensional (2D) materials hold great promise in next generation electronic devices, there are many challenges to overcome to be used in practical applications. One of them is the substrate effect, which directly affects the device performance. The large interfacial area and interaction between 2D materials and substrate significantly deteriorate the device performance. Several top-down approaches have been suggested to solve the problem. Unfortunately, however, they have some drawbacks such as a complicated fabrication process, a high production cost, or a poor mechanical property. Here, we suggest the partially suspended 2D materials-based field-effect transistors (FETs) by introducing block copolymer (BCP) lithography to fabricate the substrate effect-free 2D electronic devices. A wide range of nanometer size holes (diameter = 31~43 nm) is successfully realized with a BCP self-assembly nanopatterning process. With this approach, the interaction mechanism between active 2D materials and substrate is elucidated by precisely measuring the device performance at varied feature size. Our strategy can be widely applied to fabricate 2D materials-based high performance electronic, optoelectronic, and energy devices using a versatile self-assembly nanopatterning process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA