Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(1): C294-C303, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047300

RESUMO

Forkhead box protein 3 (FOXP3), traditionally recognized as a specific transcription factor for regulatory T cells (Tregs), has also been identified in various tumor epithelial cells (named as cancer-FOXP3, c-FOXP3). However, the natural state and functional role of FOXP3 positive tumor epithelial cells remain unknown. Monoclonal cells expressing varying levels of c-FOXP3 were isolated from established PANC-1 cells using limited dilution. Whole transcriptome sequencing and weighted gene co-expression network analysis (WGCNA) were conducted on these subsets, followed by in vitro and in vivo functional investigations. In addition, we identified c-FOXP3+E-cadherin- epithelial cells in human pancreatic cancer tissues after radical resection by immunofluorescence co-staining. We also investigated the connection between c-FOXP3+E-cadherin- epithelial cells and their clinicopathological features. Our study uncovered a distinct subset of c-FOXP3+ tumor epithelial cells characterized by reduced E-cadherin expression. C-FOXP3+E-cadherin- cells displayed significant proliferation potential and pro-angiogenic effect through the expression of chemokines, including C-X-C motif ligand 1 (CXCL1), C-X-C motif ligand 5 (CXCL5), and C-X-C motif ligand 8 (CXCL8). Notably, higher counts of c-FOXP3+E-Cadherin- cells correlated with poorer prognosis, lower tumor differentiation, lymph node metastasis, and vascular invasion in pancreatic ductal adenocarcinoma (PDAC). In conclusion, this work revealed the stable expression of FOXP3 in tumor epithelial cells, marking a distinct subset. C-FOXP3+E-cadherin- epithelial cells exhibit active proliferation and promote angiogenesis in a vascular endothelial growth factor A (VEGFA) independent manner. These findings provide novel insights into PDAC prognosis and therapeutic avenues.NEW & NOTEWORTHY In this study, we revealed a novel c-FOXP3+ tumor epithelial cell subset marked by diminished E-cadherin and stable FOXP3 expression. These subpopulations not only show robust proliferation and drive angiogenesis via CXCL1, CXCL5, and CXCL8, bypassing VEGFA pathways, but their heightened presence also correlates with adverse PDAC outcomes. By challenging traditional epithelial cell definitions and extending lymphocyte markers to these cells, our findings present innovative targets for PDAC treatment and enrich our understanding of cell biology.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fator A de Crescimento do Endotélio Vascular , Angiogênese , Ligantes , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Caderinas/genética , Células Epiteliais/metabolismo , Proliferação de Células
2.
J Med Virol ; 96(7): e29782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011762

RESUMO

Extracellular vesicles (EVs) are shown to be a novel viral transmission model capable of increasing a virus's tropism. According to our earlier research, cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or transfected with envelope protein plasmids generate a novel type of EVs that are micrometer-sized and able to encase virus particles. Here, we showed the capacity of these EVs to invade various animals both in vitro and in vivo independent of the angiotensin-converting enzyme 2 receptor. First, via macropinocytosis, intact EVs produced from Vero E6 (monkey) cells were able to enter cells from a variety of animals, including cats, dogs, bats, hamsters, and minks, and vice versa. Second, when given to zebrafish with cutaneous wounds, the EVs showed favorable stability in aqueous environments and entered the fish. Moreover, infection of wild-type (WT) mice with heterogeneous EVs carrying SARS-CoV-2 particles led to a strong cytokine response and a notable amount of lung damage. Conversely, free viral particles did not infect WT mice. These results highlight the variety of processes behind viral transmission and cross-species evolution by indicating that EVs may be possible vehicles for SARS-CoV-2 spillover and raising risk concerns over EVs' potential for viral gene transfer.


Assuntos
COVID-19 , Vesículas Extracelulares , SARS-CoV-2 , Animais , Vesículas Extracelulares/virologia , Vesículas Extracelulares/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , COVID-19/transmissão , COVID-19/virologia , Camundongos , Chlorocebus aethiops , Células Vero , Humanos , Cricetinae , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/genética , Cães , Peixe-Zebra/virologia , Gatos , Quirópteros/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética
3.
Virol J ; 21(1): 156, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992721

RESUMO

OBJECTIVES: The performance of the new Respiratory Pathogen panel (fluorescent probe melting curve, FPMC) for the qualitative detection of 12 organisms (chlamydia pneumoniae, mycoplasma pneumoniae, adenovirus, influenza A virus, influenza B virus, parainfluenza virus, rhinovirus, etc.) was assessed. METHODS: Prospectively collected nasopharyngeal swab (NPS) and sputum specimens (n = 635) were detected by using the FPMC panel, with the Sanger sequencing method as the comparative method. RESULTS: The overall percent concordance between the FPMC analysis method and the Sanger sequencing method was 100% and 99.66% for NPS and sputum specimens, respectively. The FPMC testified an overall positive percent concordance of 100% for both NPS and sputum specimens. The FPMC analysis method also testified an overall negative percent concordance of 100% and 99.38% for NPS and sputum specimens, respectively. CONCLUSIONS: The FPMC analysis method is a stable and accurate assay for rapid, comprehensive detecting for respiratory pathogens.


Assuntos
Técnicas de Diagnóstico Molecular , Nasofaringe , Infecções Respiratórias , Escarro , Humanos , Escarro/microbiologia , Escarro/virologia , Nasofaringe/virologia , Nasofaringe/microbiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Vírus/isolamento & purificação , Vírus/genética , Vírus/classificação , Adulto , Estudos Prospectivos , Pessoa de Meia-Idade , Adolescente , Feminino , Adulto Jovem , Criança , Masculino , Idoso , Pré-Escolar , Lactente , Manejo de Espécimes/métodos , Sensibilidade e Especificidade , Idoso de 80 Anos ou mais
4.
Immunology ; 168(2): 248-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35689826

RESUMO

The tumour microenvironment (TME) is a complex system composed of cancer cells, stromal cells and immune cells. Regulatory T cells (Tregs) in the TME impede immune surveillance of tumours and suppress antitumor immune responses. Transcription factor forkhead box protein 3 (FOXP3) is the main marker of Tregs, which dominates the function of Tregs. FOXP3 was originally thought to be a Tregs-specific expression molecule, and recent studies have found that FOXP3 is expressed in a variety of tumours with inconsistent functional roles. This review summarizes the recent progress of infiltrating Treg-FOXP3 and tumour-FOXP3 in TME, discusses the communication mechanism between FOXP3+ cells and effector T cells in TME, the relationship between FOXP3 and clinical prognosis, and the potential of FOXP3-targeted therapy.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias , Humanos , Fatores de Transcrição Forkhead/genética , Microambiente Tumoral , Linfócitos do Interstício Tumoral , Neoplasias/patologia , Prognóstico , Linfócitos T Reguladores
5.
Anal Chem ; 95(48): 17467-17476, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38009238

RESUMO

Glycosylation of proteins is an essential feature of extracellular vesicles (EVs). However, while the glycosylation heterogeneity focusing on specific EV subtypes and proteins will better reveal the functions of EVs, the determination of their specific glycans remains highly challenging. Herein, we report a method of protein-specific glycan recognition using DNA-encoded affinity ligands to label proteins and glycans. Manipulating the sequences of DNA tags and employing a DNA logic gate to trigger a spatial proximity-induced DNA replacement reaction enabled the release of glycan-representative DNA strands for the quantitative detection of multiple glycoforms. After size-dependent isolation of EV subgroups and decoding of three typical glycoforms on the epithelial growth factor receptor (EGFR), we found that the different EV subgroups of the EGFR glycoprotein varied with respect to glycan types and abundance. The distinctive glycoforms of the EV subgroups could interfere with the EGFR-related EV functions. Furthermore, the sialylation of small EVs possessed the potential as a cancer biomarker. This method provides new insights into the role of protein-specific glycoforms in EV functions.


Assuntos
Vesículas Extracelulares , Glicoproteínas , Glicosilação , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Vesículas Extracelulares/metabolismo , Receptores ErbB/metabolismo
6.
BMC Microbiol ; 23(1): 187, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442943

RESUMO

BACKGROUND: Dysbiosis of the gut microbiota is closely linked to hyperuricemia. However, the effect of the microbiome on uric acid (UA) metabolism remains unclear. This study aimed to explore the mechanisms through which microbiomes affect UA metabolism with the hypothesis that modifying the intestinal microbiota influences the development of hyperuricemia. RESULTS: We proposed combining an antibiotic strategy with protein-protein interaction analysis to test this hypothesis. The data demonstrated that antibiotics altered the composition of gut microbiota as UA increased, and that the spectrum of the antibiotic was connected to the purine salvage pathway. The antibiotic-elevated UA concentration was dependent on the increase in microbiomes that code for the proteins involved in purine metabolism, and was paralleled by the depletion of bacteria-coding enzymes required for the purine salvage pathway. On the contrary, the microbiota with abundant purine salvage proteins decreased hyperuricemia. We also found that the antibiotic-increased microbiota coincided with a higher relative abundance of bacteria in hyperuricemia mice. CONCLUSIONS: An antibiotic strategy combined with the prediction of microbiome bacterial function presents a feasible method for defining the key bacteria involved in hyperuricemia. Our investigations discovered that the core microbiomes of hyperuricemia may be related to the gut microbiota that enriches purine metabolism related-proteins. However, the bacteria that enrich the purine salvage-proteins may be a probiotic for decreasing urate, and are more likely to be killed by antibiotics. Therefore, the purine salvage pathway may be a potential target for the treatment of both hyperuricemia and antibiotic resistance.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Camundongos , Animais , Antibacterianos/efeitos adversos , Disbiose/microbiologia , Bactérias/genética , Purinas/efeitos adversos
7.
NMR Biomed ; 36(12): e5011, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528575

RESUMO

Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its ability to reduce scan time. Nevertheless, the reconstruction problem remains a thorny issue due to its ill posed nature. Recently, diffusion models, especially score-based generative models, have demonstrated great potential in terms of algorithmic robustness and flexibility of utilization. Moreover, a unified framework through the variance exploding stochastic differential equation is proposed to enable new sampling methods and further extend the capabilities of score-based generative models. Therefore, by taking advantage of the unified framework, we propose a k-space and image dual-domain collaborative universal generative model (DD-UGM), which combines the score-based prior with a low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrate the noise reduction and detail preservation abilities of the proposed method. Moreover, DD-UGM can reconstruct data of different frames by only training a single frame image, which reflects the flexibility of the proposed model.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos
8.
Org Biomol Chem ; 21(29): 5906-5918, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37404027

RESUMO

Radical cyclization is regarded as a powerful and promising strategy for the assembly of diverse important cyclic structures because of its high atom- and step-economy. As excellent radical acceptors, alkenes offer two potential directions, pushing the research domain of radical cyclization. In this context, as a radical precursor, sulfonyl hydrazide plays an important role in accomplishing radical cyclization of alkenes in a facile and efficient way. This review focuses on the applications of sulfonyl hydrazides in radical cyclization of alkenes, which generally has two radical conversion modes, sulfonyl radicals and sulfoxide radicals. In particular, the section of sulfonyl radicals consists of eight parts containing aromatic rings, alkenes, alkynes, cyanides, aldehydes, carboxylic acids, amides, and small ring compounds, according to the objects of cyclization after addition with alkenes. Within each category, representative instances are presented and discussed in terms of their general mechanistic perspectives when needed.

9.
Org Biomol Chem ; 21(30): 6068-6082, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37427565

RESUMO

(4 + 2) Cycloaddition plays an important role in the synthesis of versatile carbocyclic/heterocyclic compounds with its high atom- and step-economy. Additionally, with mild conditions and indispensable functional group compatibility, the radical reaction has been recognized as a useful tool in organic chemistry. Given the enormous impact of radical-mediated (4 + 2) cycloaddition processes and their promising applications, we summarize and highlight the recent works in this attractive area. On the basis of the types of radicals that initiate different (4 + 2) cycloaddition processes, we classify them into processes involving alkenyl cations or alkenyl radicals, aryl radicals, acyl radicals, alkyl radicals, and heteroatom radicals, and this review places special emphasis on the reaction design and mechanisms, which will stimulate future developments in radical-mediated intermolecular (4 + 2) cycloaddition.

10.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446906

RESUMO

Ammonia decomposition has attracted significant attention in recent years due to its ability to produce hydrogen without emitting carbon dioxide and the ease of ammonia storage. This paper reviews the recent developments in ammonia decomposition technologies for hydrogen production, focusing on the latest advances in catalytic materials and catalyst design, as well as the research progress in the catalytic reaction mechanism. Additionally, the paper discusses the advantages and disadvantages of each method and the importance of finding non-precious metals to reduce costs and improve efficiency. Overall, this paper provides a valuable reference for further research on ammonia decomposition for hydrogen production.


Assuntos
Amônia , Metais , Catálise , Hidrogênio
11.
J Transl Med ; 20(1): 489, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303162

RESUMO

RATIONALE: The M2-like tumor-associated macrophages (TAMs) are independent prognostic factors in melanoma. METHODS: We performed weighted gene co-expression network analysis (WGCNA) to identify the module most correlated with M2-like TAMs. The Cancer Genome Atlas (TCGA) patients were classified into two clusters that differed based on prognosis and biological function, with consensus clustering. A prognostic model was established based on the differentially expressed genes (DEGs) of the two clusters. We investigated the difference in immune cell infiltration and immune response-related gene expression between the high and low risk score groups. RESULTS: The risk score was defined as an independent prognostic value in melanoma. VARS1 was a hub gene in the M2-like macrophage-associated WGCNA module that the DepMap portal demonstrated was necessary for melanoma growth. Overexpressing VARS1 in vitro increased melanoma cell migration and invasion, while downregulating VARS1 had the opposite result. VARS1 overexpression promoted M2 macrophage polarization and increased TGF-ß1 concentrations in tumor cell supernatant in vitro. VARS1 expression was inversely correlated with immune-related signaling pathways and the expression of several immune checkpoint genes. In addition, the VARS1 expression level helped predict the response to anti-PD-1 immunotherapy. Pan-cancer analysis demonstrated that VARS1 expression negatively correlated with CD8 T cell infiltration and the immune response-related pathways in most cancers. CONCLUSION: We established an M2-like TAM-related prognostic model for melanoma and explored the role of VARS1 in melanoma progression, M2 macrophage polarization, and the development of immunotherapy resistance.


Assuntos
Melanoma , Macrófagos Associados a Tumor , Humanos , Transcriptoma/genética , Melanoma/genética , Melanoma/terapia , Imunoterapia , Macrófagos/metabolismo , Prognóstico
12.
Pancreatology ; 22(6): 749-759, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717305

RESUMO

OBJECTIVES: G-protein-coupled receptor 120 (GPR120) is a long-chain unsaturated fatty acid receptor, which regulates glucose metabolism and lipid. To date, there are disputes on the roles of GPR120 in the pathogenesis of cancer. Besides, little is known about its roles in the pathogenesis of pancreatic ductal adenocarcinoma (PDAC). This study was designed to investigate the roles of GPR120 in the pathogenesis of PDAC. METHODS: Immunohistochemical staining (IHC) was used for detecting the level of GPR120, epithelial-mesenchymal transformation (EMT) markers, Ki-67 and CD31 in ninety-one PDAC patients. Western blot, CCK8, flow cytometry and transwell assays were performed to determine proliferation, apoptosis, and motility in vitro. Subcutaneous tumor model was established to validate the roles of GPR120 in vivo. RESULTS: GPR120 was highly expressed in PDAC tissues, which was associated with free fatty acids (FFAs), lymph node metastasis (LNM), and poor prognosis. Moreover, GPR120 activation led to down-regulation of E-cadherin and up-regulation of Snail, Vimentin, N-cadherin, MMP2, MMP9, and CD31. Additionally, GPR120 decreased the expression of P-PI3K, P-AKT and CMYC and increased the level of P-JAK2, P-STAT3, Wnt5a, total ß-catenin and ß-catenin in nucleus. CONCLUSIONS: GPR120 promoted proliferation inhibition and apoptosis of PDAC, and contributed to PDAC metastasis via inducing EMT and angiogenesis. GPR120 served as a double-edged sword in the pathogenesis of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/patologia , Prognóstico , Receptores Acoplados a Proteínas G/genética , beta Catenina/genética , Neoplasias Pancreáticas
13.
Org Biomol Chem ; 20(32): 6418-6422, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35876742

RESUMO

A novel cyclization/hydrolysis of 1,5-enenitriles for the synthesis of valuable pyrrolidine-2,4-diones in the aqueous phase using I2 as the catalyst and tert-butyl hydroperoxide (TBHP) as the oxidant is reported. In the presence of the I2/TBHP system, sulfonyl hydrazides produce sulfonyl radicals, which undergo radical addition, intramolecular cyclization, hydrogen abstraction, and hydrolysis to give the final products. The use of the inexpensive and environmentally friendly I2/TBHP catalytic oxidation system in the aqueous phase makes it a benign and sustainable strategy.


Assuntos
Oxidantes , Água , Catálise , Ciclização , Hidrólise , terc-Butil Hidroperóxido
14.
Org Biomol Chem ; 20(35): 7067-7070, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993972

RESUMO

The novel polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs has been developed to prepare 2-pyrrolidinone derivatives with polychloromethyl units with the use of an inexpensive copper salt under mild conditions. This strategy includes two dual-role designs, not only improving atomic utilization but also allowing a cleaner process. The wide substrate scope and simple reaction conditions demonstrate the practicability of this protocol.

15.
Acta Pharmacol Sin ; 43(4): 781-787, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34294887

RESUMO

Lack of efficiency has been a major problem shared by all currently developed anti-SARS-CoV-2 therapies. Our previous study shows that SARS-CoV-2 structural envelope (2-E) protein forms a type of cation channel, and heterogeneously expression of 2-E channels causes host cell death. In this study we developed a cell-based high throughput screening (HTS) assay and used it to discover inhibitors against 2-E channels. Among 4376 compounds tested, 34 hits with cell protection activity were found. Followed by an anti-viral analysis, 15 compounds which could inhibit SARS-CoV-2 replication were identified. In electrophysiological experiments, three representatives showing inhibitory effect on 2-E channels were chosen for further characterization. Among them, proanthocyanidins directly bound to 2-E channel with binding affinity (KD) of 22.14 µM in surface plasmon resonance assay. Molecular modeling and docking analysis revealed that proanthocyanidins inserted into the pore of 2-E N-terminal vestibule acting as a channel blocker. Consistently, mutations of Glu 8 and Asn 15, two residues lining the proposed binding pocket, abolished the inhibitory effects of proanthocyanidins. The natural product proanthocyanidins are widely used as cosmetic, suggesting a potential of proanthocyanidins as disinfectant for external use. This study further demonstrates that 2-E channel is an effective antiviral drug target and provides a potential antiviral candidate against SARS-CoV-2.


Assuntos
Antivirais , COVID-19 , Antivirais/química , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2
16.
Acta Pharmacol Sin ; 43(2): 483-493, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33907306

RESUMO

The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
17.
Acta Pharmacol Sin ; 43(4): 788-796, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34349236

RESUMO

An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , SARS-CoV-2
18.
Clin Infect Dis ; 72(4): 626-633, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33048116

RESUMO

BACKGROUND: Patients with coronavirus disease 2019 (COVID-19) experience a wide clinical spectrum, with over 2% developing fatal outcome. The prognostic factors for fatal outcome remain sparsely investigated. METHODS: A retrospective cohort study was performed in a cohort of patients with confirmed COVID-19 in one designated hospital in Wuhan, China, from 17 January-5 March 2020. The laboratory parameters and a panel of cytokines were consecutively evaluated until patients' discharge or death. The laboratory features that could be used to predict fatal outcome were identified. RESULTS: Consecutively collected data on 55 laboratory parameters and cytokines from 642 patients with COVID-19 were profiled along the entire disease course, based on which 3 clinical stages (acute stage, days 1-9; critical stage, days 10-15; and convalescence stage, day 15 to observation end) were determined. Laboratory findings based on 75 deceased and 357 discharged patients revealed that, at the acute stage, fatality could be predicted by older age and abnormal lactate dehydrogenase (LDH), urea, lymphocyte count, and procalcitonin (PCT) level. At the critical stage, the fatal outcome could be predicted by age and abnormal PCT, LDH, cholinesterase, lymphocyte count, and monocyte percentage. Interleukin 6 (IL-6) was remarkably elevated, with fatal cases having a more robust production than discharged cases across the whole observation period. LDH, PCT, lymphocytes, and IL-6 were considered highly important prognostic factors for COVID-19-related death. CONCLUSIONS: The identification of predictors that were routinely tested might allow early identification of patients at high risk of death for early aggressive intervention.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , COVID-19/mortalidade , China/epidemiologia , Humanos , Laboratórios , Prognóstico , Estudos Retrospectivos
19.
Cancer Sci ; 111(1): 175-185, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31715070

RESUMO

Neurogenic differentiation factor 1 (NeuroD1) is a transcription factor critical for promoting neuronal differentiation and maturation. NeuroD1 is involved in neuroblastoma and medulloblastoma; however, its molecular mechanism in promoting tumorigenesis remains unclear. Furthermore, the role of NeuroD1 in non-neural malignancies has not been widely characterized. Here, we found that NeuroD1 is highly expressed in colorectal cancer. NeuroD1-silencing induces the expression of p21, a master regulator of the cell cycle, leading to G2 -M phase arrest and suppression of colorectal cancer cell proliferation as well as colony formation potential. Moreover, NeuroD1-mediated regulation of p21 expression occurs in a p53-dependent manner. Through chromatin immunoprecipitation and point mutation analysis in the predicted NeuroD1 binding site of the p53 promoter, we found that NeuroD1 directly binds to the p53 promoter and suppresses its transcription, resulting in increased p53 expression in NeuroD1-silenced colorectal cancer cells. Finally, xenograft experiments demonstrated that NeuroD1-silencing suppresses colorectal cancer cell tumorigenesis potential by modulating p53 expression. These findings reveal NeuroD1 as a novel regulator of the p53/p21 axis, underscoring its importance in promoting non-neural malignancies. Furthermore, this study provides insight into the transcriptional regulation of p53.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteína Supressora de Tumor p53/genética , Carcinogênese/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
20.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511384

RESUMO

Lassa virus (LASV) is the causative agent of a fatal hemorrhagic fever in humans. The glycoprotein (GP) of LASV mediates viral entry into host cells, and correct processing and modification of GP by host factors is a prerequisite for virus replication. Here, using an affinity purification-coupled mass spectrometry (AP-MS) strategy, 591 host proteins were identified as interactors of LASV GP. Gene ontology analysis was performed to functionally annotate these proteins, and the oligosaccharyltransferase (OST) complex was highly enriched. Functional studies conducted by using CRISPR-Cas9-mediated knockouts showed that STT3A and STT3B, the two catalytically active isoforms of the OST complex, are essential for the propagation of the recombinant arenavirus rLCMV/LASV glycoprotein precursor, mainly via affecting virus infectivity. Knockout of STT3B, but not STT3A, caused hypoglycosylation of LASV GP, indicating a preferential requirement of LASV for the STT3B-OST isoform. Furthermore, double knockout of magnesium transporter 1 (MAGT1) and tumor suppressor candidate 3 (TUSC3), two specific subunits of STT3B-OST, also caused hypoglycosylation of LASV GP and affected virus propagation. Site-directed mutagenesis analysis revealed that the oxidoreductase CXXC active-site motif of MAGT1 or TUSC3 is essential for the glycosylation of LASV GP. NGI-1, a small-molecule OST inhibitor, can effectively reduce virus infectivity without affecting cell viability. The STT3B-dependent N-glycosylation of GP is conserved among other arenaviruses, including both the Old World and New World groups. Our study provided a systematic view of LASV GP-host interactions and revealed the preferential requirement of STT3B for LASV GP N-glycosylation.IMPORTANCE Glycoproteins play vital roles in the arenavirus life cycle by facilitating virus entry and participating in the virus budding process. N-glycosylation of GPs is responsible for their proper functioning; however, little is known about the host factors on which the virus depends for this process. In this study, a comprehensive LASV GP interactome was characterized, and further study revealed that STT3B-dependent N-glycosylation was preferentially required by arenavirus GPs and critical for virus infectivity. The two specific thioredoxin subunits of STT3B-OST MAGT1 and TUSC3 were found to be essential for the N-glycosylation of viral GP. NGI-1, a small-molecule inhibitor of OST, also showed a robust inhibitory effect on arenavirus. Our study provides new insights into LASV GP-host interactions and extends the potential targets for the development of novel therapeutics against Lassa fever in the future.


Assuntos
Glicoproteínas/metabolismo , Hexosiltransferases/metabolismo , Febre Lassa/metabolismo , Vírus Lassa/metabolismo , Proteínas de Membrana/metabolismo , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions , Linhagem Celular , Técnicas de Inativação de Genes , Glicosilação , Células HEK293 , Células HeLa , Hexosiltransferases/genética , Humanos , Vírus Lassa/genética , Vírus Lassa/patogenicidade , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso , Oxirredutases/metabolismo , Isoformas de Proteínas , Receptores de Superfície Celular , Proteínas Supressoras de Tumor/genética , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA