Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 146(4): 2398-2410, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252883

RESUMO

Electrolyte conductivity contributes to the efficiency of devices for electrochemical conversion of carbon dioxide (CO2) into useful chemicals, but the effect of the dissolution of CO2 gas on conductivity has received little attention. Here, we report a joint experimental-theoretical study of the properties of acetonitrile-based CO2-expanded electrolytes (CXEs) that contain high concentrations of CO2 (up to 12 M), achieved by CO2 pressurization. Cyclic voltammetry data and paired simulations show that high concentrations of dissolved CO2 do not impede the kinetics of outer-sphere electron transfer but decrease the solution conductivity at higher pressures. In contrast with conventional behaviors, Jones reactor-based measurements of conductivity show a nonmonotonic dependence on CO2 pressure: a plateau region of constant conductivity up to ca. 4 M CO2 and a region showing reduced conductivity at higher [CO2]. Molecular dynamics simulations reveal that while the intrinsic ionic strength decreases as [CO2] increases, there is a concomitant increase in ionic mobility upon CO2 addition that contributes to stable solution conductivities up to 4 M CO2. Taken together, these results shed light on the mechanisms underpinning electrolyte conductivity in the presence of CO2 and reveal that the dissolution of CO2, although nonpolar by nature, can be leveraged to improve mass transport rates, a result of fundamental and practical significance that could impact the design of next-generation systems for CO2 conversion. Additionally, these results show that conditions in which ample CO2 is available at the electrode surface are achievable without sacrificing the conductivity needed to reach high electrocatalytic currents.

2.
Anal Chem ; 94(51): 17956-17963, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36512745

RESUMO

Here, we demonstrate for the first time that the mechanism of adsorption-coupled electron-transfer (ACET) reactions can be identified experimentally. The electron transfer (ET) and specific adsorption of redox-active molecules are coupled in many electrode reactions with practical importance and fundamental interest. ACET reactions are often represented by a concerted mechanism. In reductive adsorption, an oxidant is simultaneously reduced and adsorbed as a reductant on the electrode surface through the ACET step. Alternatively, the non-concerted mechanism mediates outer-sphere reduction and adsorption separately when the reductant adsorption is reversible. In electrocatalysis, reversibly adsorbed reductants are ubiquitous and crucial intermediates. Moreover, electrocatalysis is complicated by the mixed mechanism based on simultaneous ACET and outer-sphere ET steps. In this work, we reveal the non-concerted mechanism for ferrocene derivatives adsorbed at highly oriented pyrolytic graphite as simple models. We enable the transient voltammetric mode of nanoscale scanning electrochemical microscopy (SECM) to kinetically control the adsorption step, which is required for the discrimination of non-concerted, concerted, and mixed mechanisms. Experimental voltammograms are compared with each mechanism by employing finite element simulation. The non-concerted mechanism is supported to indicate that the ACET step is intrinsically slower than its outer-sphere counterpart by at least four orders of magnitude. This finding implies that an ACET step is facilitated thermodynamically but may not be necessarily accelerated or catalyzed by the adsorption of the reductant. SECM-based transient voltammetry will become a powerful tool to resolve and understand electrocatalytic ACET reactions at the elementary level.


Assuntos
Elétrons , Substâncias Redutoras , Adsorção , Microscopia Eletroquímica de Varredura , Transporte de Elétrons
3.
Anal Chem ; 93(25): 8906-8914, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34129324

RESUMO

Scanning electrochemical microscopy (SECM) enables reactivity and topography imaging of single nanostructures in the electrolyte solution. The in situ reactivity and topography, however, are convoluted in the real-time image, thus requiring another imaging method for subsequent deconvolution. Herein, we develop an intelligent mode of nanoscale SECM to simultaneously obtain separate reactivity and topography images of non-flat substrates with reactive and inert regions. Specifically, an ∼0.5 µm-diameter Pt tip approaches a substrate with an ∼0.15 µm-height active Au band adjacent to an ∼0.4 µm-wide slope of the inactive glass surface followed by a flat inactive glass region. The amperometric tip current versus tip-substrate distance is measured to observe feedback effects including redox-mediated electron tunneling from the substrate. The intelligent SECM software automatically terminates the tip approach depending on the local reactivity and topography of the substrate under the tip. The resultant short tip-substrate distances allow for non-contact and high-resolution imaging in contrast to other imaging modes based on approach curves. The numerical post-analysis of each approach curve locates the substrate under the tip for quantitative topography imaging and determines the tip current at a constant distance for topography-independent reactivity imaging. The nanoscale grooves are revealed by intelligent topography SECM imaging as compared to scanning electron microscopy and atomic force microscopy without reactivity information and as unnoticed by constant-height SECM imaging owing to the convolution of topography with reactivity. Additionally, intelligent reactivity imaging traces abrupt changes in the constant-distance tip current across the Au/glass boundary, which prevents constant-current SECM imaging.


Assuntos
Nanoestruturas , Eletroquímica , Microscopia de Força Atômica , Microscopia Eletroquímica de Varredura , Oxirredução
4.
Anal Chem ; 91(4): 2970-2977, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30623642

RESUMO

Hot-tip scanning electrochemical microscopy (HT-SECM) is a novel surface characterization technique utilizing an alternating current (ac) polarized disk microelectrode as a probe. A high-frequency (∼100 MHz) ac waveform applied between the tip and a counter electrode causes the resistive heating of the surrounding electrolyte solution that leads also to the electrothermal fluid flow (ETF). The effects of the temperature and the convection driven by the ETF result in the increased rate of mass transfer of the redox species. In this paper, HT-SECM was studied in positive and negative feedback modes, for which approach curves and cyclic voltammograms were recorded. The experimental data showed that the use of a hot tip leads to a more pronounced feedback compared to that at room temperature. Numerical simulations performed in COMSOL Multiphysics supported the experimental findings. Additional analytical approximations were developed that could be used to predict the faradaic response in HT-SECM experiments. Finally, a possible contribution to the current from the Soret effect was studied theoretically. A good understanding of HT-SECM was achieved, both experimentally and theoretically, suggesting that this methodology could be applied to investigate electrode kinetics under the conditions of elevated temperature and increased rate of mass transfer.

5.
Anal Chem ; 91(15): 10227-10235, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31310104

RESUMO

Scanning electrochemical microscopy (SECM) enables high-resolution imaging by examining the amperometric response of an ultramicroelectrode tip near a substrate. Spatial resolution, however, is compromised for nonflat substrates, where distances from a tip far exceed the tip size to avoid artifacts caused by the tip-substrate contact. Herein, we propose a new imaging mode of SECM based on real-time analysis of the approach curve to actively control nanoscale tip-substrate distances without contact. The power of this software-based method is demonstrated by imaging an insulating substrate with step edges using standard instrumentation without combination of another method for distance measurement, e.g., atomic force microscopy. An ∼500 nm diameter Pt tip approaches down to ∼50 nm from upper and lower terraces of a 500 nm height step edge, which are located by real-time theoretical fitting of an experimental approach curve to ensure the lack of electrochemical reactivity. The tip approach to the step edge can be terminated at <20 nm prior to the tip-substrate contact as soon as the theory deviates from the tip current, which is analyzed numerically afterward to locate the inert edge. The advantageous local adjustment of tip height and tip current at the final point of tip approach distinguishes the proposed imaging mode from other modes based on standard instrumentation. In addition, the glass sheath of the Pt tip is thinned to ∼150 nm to rarely contact the step edge, which is unavoidable and instantaneously detected as an abrupt change in the slope of approach curve to prevent damage of the fragile nanotip.


Assuntos
Algoritmos , Eletroquímica/métodos , Eletrodos , Microscopia Eletroquímica de Varredura/métodos , Imagem Molecular/métodos , Platina/química , Simulação por Computador , Eletroquímica/instrumentação , Microscopia Eletroquímica de Varredura/instrumentação , Nanotecnologia , Propriedades de Superfície
6.
Anal Chem ; 91(8): 5446-5454, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30907572

RESUMO

The nuclear pore complex (NPC) solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell to play important biological and biomedical roles. However, it is not well-understood chemically how this biological nanopore selectively and efficiently transports various substances, including small molecules, proteins, and RNAs by using transport barriers that are rich in highly disordered repeats of hydrophobic phenylalanine and glycine intermingled with charged amino acids. Herein, we employ scanning electrochemical microscopy to image and measure the high permeability of NPCs to small redox molecules. The effective medium theory demonstrates that the measured permeability is controlled by diffusional translocation of probe molecules through water-filled nanopores without steric or electrostatic hindrance from hydrophobic or charged regions of transport barriers, respectively. However, the permeability of NPCs is reduced by a low millimolar concentration of Ca2+, which can interact with anionic regions of transport barriers to alter their spatial distributions within the nanopore. We employ atomic force microscopy to confirm that transport barriers of NPCs are dominantly recessed (∼80%) or entangled (∼20%) at the high Ca2+ level in contrast to authentic populations of entangled (∼50%), recessed (∼25%), and "plugged" (∼25%) conformations at a physiological Ca2+ level of submicromolar. We propose a model for synchronized Ca2+ effects on the conformation and permeability of NPCs, where transport barriers are viscosified to lower permeability. Significantly, this result supports a hypothesis that the functional structure of transport barriers is maintained not only by their hydrophobic regions, but also by charged regions.


Assuntos
Cálcio/química , Complexos de Coordenação/química , Técnicas Eletroquímicas , Poro Nuclear/química , Transporte de Íons , Conformação Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
8.
Anal Chem ; 88(20): 10284-10289, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27659801

RESUMO

We report the crucial components required to perform scanning electrochemical microscopy (SECM) with nanometer-scale resolution. The construction and modification of the software and hardware instrumentation for nanoscale SECM are explicitly explained including (1) the LabVIEW code that synchronizes the SECM tip movement with the electrochemical response, (2) the construction of an isothermal chamber to stabilize the nanometer scale gap between the tip and substrate, (3) the modification of a commercial bipotentiostat to avoid electrochemical tip damage during SECM experiments, and (4) the construction of an SECM stage to avoid artifacts in SECM images. These findings enabled us to successfully build a nanoscale SECM, which can be utilized to map the electrocatalytic activity of individual nanoparticles in a typical ensemble sample and study the structure/reactivity relationship of single nanostructures.

9.
J Am Chem Soc ; 135(42): 15885-9, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24063745

RESUMO

Here we demonstrate the use of a previously reported pattern recognition algorithm to evaluate correlations between 50 different materials properties of the elements and their kinetics for the hydrogen evolution reaction in acid. We determined that the melting point and bulk modulus of the elements quantitatively gave the highest correlations of all materials properties investigated. We also showed that the melting point and bulk modulus correlations held true for a popular hydrogen evolution catalysts alloy, NiMo, and a previously untested material, MoSi2. In addition, we quantified the previously known relationship between the d-band center of an element and its kinetics for hydrogen evolution, and found that the melting point and bulk modulus correlations have correlations that are similar to but slightly stronger than those of the d-band center.

10.
J Am Chem Soc ; 135(42): 15890-6, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24063768

RESUMO

We report a new method of scanning electrochemical microscopy (SECM) that can be used to separate multireactional electrochemical interfaces, i.e., electrodes at which two or more reactions occur (and hence two partial currents flow) at the same time. This was done with a modified tip generation/substrate collection mode where the two reactions occur on the tip electrode, and the substrate electrode is held at a potential to collect only one of the products, allowing the determination of the individual partial currents. Thus, by using the substrate electrode current and the difference between the tip and substrate electrode currents, the two reactions occurring on the tip electrode can be separated. As a test case for this new method, we investigated proton reduction on Mn, a reaction that, because of the highly corrosive nature of Mn, to our knowledge has never before been directly measured. This test was carried out using a Mn tip electrode and a Pt substrate electrode. Using a three-dimensional COMSOL Multiphysics simulation, we were able to accurately determine the tip/substrate distance with this electrode, and by fitting simulations to experimental data, we were able to determine an exchange current density, log(j(0)) = -4.7 ± 0.7 A cm(-2), for proton reduction on Mn in strong acid. This result corrects a literature value and was used in a pattern recognition algorithm reported in a companion manuscript.

11.
Chemphyschem ; 14(10): 2277-87, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23494937

RESUMO

Photoelectrochemical water splitting to generate H2 and O2 using only photon energy (with no added electrical energy) has been demonstrated with dual n-type-semiconductor (or Z-scheme) systems. Here we investigated two different Z-scheme systems; one is comprised of two cells with the same metal-oxide semiconductor (W- and Mo-doped bismuth vanadate), that is, Pt-W/Mo-BiVO4, and the other is comprised of the metal oxide and a chalcogenide semiconductor, that is, Pt-W/Mo-BiVO4 and Zn(0.2)Cd(0.8)Se. The redox couples utilized in these Z-scheme configurations were I(-)/IO3(-) or S(2-)/S(n)(2-), respectively. An electrochemical analysis of the system in terms of cell components is shown to illustrate the behavior of the complete photoelectrochemical Z-scheme water-splitting system. H2 gas from the unbiased photolysis of water was detected using gas chromatography-mass spectroscopy and using a membrane-electrode assembly. The electrode configuration to achieve the maximum conversion efficiency from solar energy to chemical energy with the given materials and the Z-scheme is discussed. Here, the possibilities and challenges of Z-scheme unbiased photoelectrochemical water-splitting devices and the materials to achieve practical solar-fuel generation are discussed.

12.
ACS Meas Sci Au ; 3(2): 103-112, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37090257

RESUMO

Extracting information from experimental measurements in the chemical sciences typically requires curve fitting, deconvolution, and/or solving the governing partial differential equations via numerical (e.g., finite element analysis) or analytical methods. However, using numerical or analytical methods for high-throughput data analysis typically requires significant postprocessing efforts. Here, we show that deep learning artificial neural networks can be a very effective tool for extracting information from experimental data. As an example, reactivity and topography information from scanning electrochemical microscopy (SECM) approach curves are highly convoluted. This study utilized multilayer perceptrons and convolutional neural networks trained on simulated SECM data to extract kinetic rate constants of catalytic substrates. Our key findings were that multilayer perceptron models performed very well when the experimental data were close to the ideal conditions with which the model was trained. However, convolutional neural networks, which analyze images as opposed to direct data, were able to accurately predict the kinetic rate constant of Fe-doped nickel (oxy)hydroxide catalyst at different applied potentials even though the experimental approach curves were not ideal. Due to the speed at which machine learning models can analyze data, we believe this study shows that artificial neural networks could become powerful tools in high-throughput data analysis.

13.
Chem Commun (Camb) ; 59(38): 5713-5716, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37089105

RESUMO

We shed light on the mechanism and rate-determining steps of the electrochemical carboxylation of acetophenone as a function of CO2 concentration by using a robust finite element analysis model that incorporates each reaction step. Specifically, we show that the first electrochemical reduction of acetophenone is followed by the homogeneous chemical addition of CO2. The electrochemical reduction of the acetophenone-CO2 adduct is more facile than that of acetophenone, resulting in an Electrochemical-Chemical-Electrochemical (ECE) reaction pathway that appears as a single voltammetric wave. These modeling results provide new fundamental insights into the complex microenvironment in CO2-rich media that produces an optimum electrochemical carboxylation rate as a function of CO2 pressure.

14.
Anal Chem ; 84(11): 5159-63, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22591026

RESUMO

In this paper, we present a technique to rapidly and directly examine ultramicroelectrodes (UMEs) by white light vertical scanning interferometry (VSI). This technique is especially useful in obtaining topographic information with nanometer resolution without destruction or modification of the UME and in recognizing tips where the metal is recessed below the insulating sheath. Two gold UMEs, one with a metal radius a = 25 µm and relative insulating sheath radius RG = 2 and the other with a = 5 µm and RG = ∼1.5, were examined, and the average depth of the gold recessions was determined to be 1.15 µm and 910 nm, respectively. Electrodeposition of gold was performed to fill the recessed hole, and the depth was reduced to ∼200 nm. With the electrodeposited gold electrode and a conventional microelectrode (a = 25 µm) as a tip and substrate, respectively, a tip/substrate distance, d, of 600 nm was achieved allowing scanning electrochemical microscopy (SECM) in positive feedback mode at a close distance, which is useful for measuring fast kinetics.

15.
Langmuir ; 28(15): 6476-84, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22428877

RESUMO

While transition metal oxides have been thoroughly investigated as coatings for electrochemical capacitors due to their pseudocapacitance, little work has been done investigating other oxide coatings. There exists a whole class of nanoporous oxides typically synthesized by sol-gel chemistry techniques that have very high differential capacitance. This high differential capacitance has been attributed to the surface potential of these materials and the close approach of counterions near the surface of these oxides. This study focuses on investigating the electrochemical capacitance of non-transition metal oxide nanoparticle coatings when deposited on supporting electrodes. Here, we show that, by adding coatings of SiO(2), AlOOH, TiO(2), and ZrO(2) nanoparticles to graphite support electrodes, we can increase the electrochemical capacitance. We also show that the measured electrochemical capacitance of these oxide-coated electrodes directly relates to the electrophoretic mobility of these materials with the lowest values in capacitance occurring at or near the respective isoelectric pH (pH(IEP)) of each oxide.

17.
ChemSusChem ; 13(23): 6338-6345, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196939

RESUMO

Electrochemical studies of CO2 conversion by molecular catalysts are typically carried out in a narrow range of near-ambient CO2 pressures wherein low CO2 solubilities in the liquid phase can limit the rate of CO2 reduction. In this study, five-fold rate enhancements are enabled by pairing CO2 -expanded electrolytes (CXEs), a class of media that accommodate multimolar concentrations of CO2 in organic solvents at modest pressures, with a homogeneous molecular electrocatalyst, [Re(CO)3 (bpy)Cl] (1, bpy=2,2'-bipyridyl). Analysis of cyclic voltammetry data reveals pressure-tunable rate behavior, with first-order kinetics at moderate CO2 pressures giving way to zero-order kinetics at higher pressures. The significant enhancement in the space-time yield of CO demonstrates that CXEs offer a simple yet powerful strategy for unlocking the intrinsic potential of molecular catalysts by mitigating CO2 solubility limitations commonly encountered in conventional liquid electrolytes. Moreover, our findings reveal that 1, a workhorse molecular catalyst, performs with intrinsic kinetic behavior, which is competitive with fast enzymes under optimal conditions in CXEs.

18.
ChemSusChem ; 12(16): 3761-3768, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31170315

RESUMO

Multimolar CO2 concentrations are achieved in acetonitrile solutions containing supporting electrolyte at relatively mild CO2 pressures (<5 MPa) and ambient temperature. Such CO2 -rich, electrolyte-containing solutions are termed as CO2 -eXpanded Electrolytes (CXEs) because significant volumetric expansion of the liquid phase accompanies CO2 dissolution. Cathodic polarization of a model polycrystalline gold electrode-catalyst in CXE media enhances CO2 to CO conversion rates by up to an order of magnitude compared with those attainable at near-ambient pressures, without loss of selectivity. The observed catalytic process intensification stems primarily from markedly increased CO2 availability. However, a non-monotonic correlation between the dissolved CO2 concentration and catalytic activity is observed, with an optimum occurring at approximately 5 m CO2 concentration. At the highest applied CO2 pressures, catalysis is significantly attenuated despite higher CO2 concentrations and improved mass-transport characteristics, attributed in part to increased solution resistance. These results reveal that pressure-tunable CXE media can significantly intensify CO2 reduction rates over known electrocatalysts by alleviating substrate starvation, with CO2 pressure as a crucial variable for optimizing the efficiency of electrocatalytic CO2 conversion.

19.
J Obstet Gynaecol Can ; 30(6): 489-499, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18611300

RESUMO

OBJECTIVE: To assess women's knowledge, attitudes, and behaviours related to Human Papillomavirus (HPV) and HPV vaccination. METHODS: A self-administered questionnaire was completed by 98 women (90.7% response rate) attending a hospital-based obstetrics and gynaecology outpatient clinic in a mid-size Ontario city. RESULTS: Women had a moderate level of knowledge of general HPV-related issues, but lacked information about the ability of barrier contraception to prevent HPV and about characteristics of HPV vaccination. Women were strongly supportive of HPV vaccination for both male and female teenagers, but reported low levels of intention to receive vaccination themselves. Physician recommendation was the most influential factor in women intention to be vaccinated, and younger women were more likely to say they intended to be vaccinated. HPV-related knowledge, level of education, and number of previous sexual partners were unrelated to women's intentions to receive HPV vaccination. CONCLUSION: Findings indicate that women's knowledge about HPV vaccination is inconsistent, that women are supportive of vaccinating both male and female teenagers, and that physician recommendation and younger age are associated with women's interest in receiving the vaccine.


Assuntos
Atitude Frente a Saúde , Conhecimentos, Atitudes e Prática em Saúde , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Neoplasias do Colo do Útero/prevenção & controle , Adolescente , Adulto , Fatores Etários , Escolaridade , Feminino , Humanos , Ontário , Infecções por Papillomavirus/virologia , Parceiros Sexuais , Inquéritos e Questionários , Neoplasias do Colo do Útero/virologia
20.
Behav Brain Res ; 168(1): 64-73, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16343652

RESUMO

Emission of 50 kHz ultrasonic calls in rats is known to be associated with appetitive behavioural situations and positive social interactions. The purpose of the study was to pharmacologically characterize amphetamine-induced 50 kHz calls and to perform quantitative mapping of this response in the nucleus accumbens. Injections of amphetamine into the nucleus accumbens induced species-typical 50 kHz calls in adult rats. The acoustic parameters of the calls were not affected by different amphetamine doses or combination of agents. The increase in the number of calls occurred predominantly from the accumbens shell and to a lesser degree from the core region. This effect was dose-dependent within the range of 1-20 microg of amphetamine and was reversed by pretreatment with D1 or D2 dopamine antagonists (SKF-83566 or raclopride) administered to the same brain site. However, another D2 dopamine receptor antagonist, haloperidol, which is known to increase the accumbens dopamine level, was ineffective in reversing the increase in call number at the dose studied. On the contrary, intraacumbens haloperidol, when injected alone, caused an increase in 50 kHz calls. It is concluded that the release of dopamine, predominantly in the accumbens shell region, is responsible for production of 50 kHz calls and the calls may indicate an appetitive state compatible with anticipation of reward and positive affect. Both D1 and D2 subtypes of dopamine receptors may be necessary to induce 50 kHz calls and signal the appetitive state.


Assuntos
Anfetamina/farmacologia , Mapeamento Encefálico/métodos , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens/fisiologia , Vocalização Animal/efeitos dos fármacos , Anfetamina/administração & dosagem , Animais , Comportamento Apetitivo/efeitos dos fármacos , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/fisiologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Relação Dose-Resposta a Droga , Haloperidol/farmacologia , Relações Interpessoais , Masculino , Microinjeções , Núcleo Accumbens/efeitos dos fármacos , Putamen/efeitos dos fármacos , Putamen/fisiologia , Ratos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidores , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA