RESUMO
Solid-solid reactions stand out in rechargeable sulfur-based batteries due to the robust redox couples and high sulfur utilization in theory. However, conventional solid-solid reactions in sulfur cathode always present slow reaction kinetics and huge redox polarization due to the low electronic conductivity of sulfur and the generation of various electrochemical inert intermediates. In view of this, it is crucial to improve the electrochemical activity of sulfur cathode and tailor the redox direction. Guided by thermodynamics analysis, short-chain sulfur molecules (S2-4) are successfully synthesized by space-limited domain principle. Unlike conventional cyclic S8 molecules with complex routes in solid-solid reaction, short-chain sulfur molecules not only shorten the length of the redox chain but also inhibit the formation of irreversible intermediates, which brings excellent redox dynamics and reversibility. As a result, the Cu-S battery built by short-chain sulfur molecules can deliver a high reversible capacity of 3,133 mAh g-1. To put this into practice, quasi-solid-state aqueous flexible battery based on short-chain sulfur molecules is also designed and evaluated, showing superior mechanical flexibility and electrochemical property. It indicates that the introduction of short-chain sulfur molecules in rechargeable battery can promote the development and application of high-performance sulfur-based aqueous energy storage systems.
RESUMO
Selenium sulfide (SeS2) features higher electronic conductivity than sulfur and higher theoretical capacity and lower cost than selenium, attracting considerable interest in energy storage field. Although nonaqueous Li/Na/K-SeS2 batteries are attractive for their high energy density, the notorious shuttle effect of polysulfides/polyselenides and the intrinsic limitations of organic electrolyte have hindered the deployment of this technology. To circumvent these issues, here we design an aqueous Cu-SeS2 battery by encapsulating SeS2 in a defect-enriched nitrogen-doped porous carbon monolith. Except the intrinsic synergistic effect between Se and S in SeS2, the porous structure of carbon matrix has sufficient internal voids to buffer the volume change of SeS2 and provides abundant pathways for both electrons and ions. In addition, the synergistic effect of nitrogen doping and topological defect not only enhances the chemical affinity between reactants and carbon matrix but also offers catalytic active sites for electrochemical reactions. Benefiting from these merits, the Cu-SeS2 battery delivers superior initial reversible capacity of 1,905.1 mAh g-1 at 0.2 A g-1 and outstanding long-span cycling performance over 1,000 cycles at 5 A g-1. This work applies variable valence charge carriers to aqueous metal-SeS2 batteries, providing valuable inspiration for the construction of metal-chalcogen batteries.
RESUMO
The glycosaminoglycan hyaluronan (HA) plays an important role in tumor progression. However, its biological and clinical significance in papillary thyroid cancer (PTC) remains unknown. Immunohistochemistry was performed to examine HA expression in tissues from PTC patients. Two PTC cell lines were treated with HA synthesized inhibitor against HA production to assess its function. Serum HA levels from 107 PTC patients, 30 Hashimoto thyroiditis patients, and 45 normal controls (NC) were measured by chemiluminescence immunoassay. HA levels in fine needle aspiration (FNA) washouts obtained from thyroid nodules and lymph nodes (LNs) were measured by chemiluminescence immunoassay. Area under the curve (AUC) was computed to evaluate HA's clinical value. HA was highly expressed in PTC. Reducing HA production significantly inhibited PTC cell proliferation and invasion. Importantly, serum HA levels in PTC were significantly higher than those in NCs and Hashimoto thyroiditis and allowed distinguishing of thyroid cancers from NCs with high accuracy (AUC = 0.782). Moreover, elevated serum HA levels in PTC correlate with LN metastasis. HA levels in FNA washouts from PTC patients were significantly higher than those in benign controls, with a high AUC value (0.8644) for distinguishing PTC from benign controls. Furthermore, HA levels in FNA washouts from metastatic LN were significantly higher than those in nonmetastatic LN, with a high AUC value (0.8007) for distinguishing metastatic LNs from nonmetastatic LNs. HA levels in serum and FNA washout exhibited a potential significance for PTC diagnosis and an indicator for LN metastasis in patients with PTC.
Assuntos
Carcinoma Papilar , Ácido Hialurônico , Metástase Linfática , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Ácido Hialurônico/sangue , Ácido Hialurônico/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/diagnóstico , Adulto , Carcinoma Papilar/metabolismo , Carcinoma Papilar/diagnóstico , Linhagem Celular Tumoral , Carcinoma/metabolismo , Carcinoma/diagnóstico , Carcinoma/patologia , Linfonodos/patologia , Linfonodos/metabolismo , Doença de Hashimoto/metabolismo , Doença de Hashimoto/sangue , Doença de Hashimoto/patologia , Doença de Hashimoto/diagnóstico , Biópsia por Agulha Fina , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/sangue , Proliferação de CélulasRESUMO
Uncovering the hardening mechanisms is of great importance to accelerate the design of superhard high-entropy carbides (HECs). Herein, the hardening mechanisms of HECs by a combination of experiments and first-principles calculations are systematically explored. The equiatomic single-phase 4- to 8-cation HECs (4-8HECs) are successfully fabricated by the two-step approach involving ultrafast high-temperature synthesis and hot-press sintering techniques. The as-fabricated 4-8HEC samples possess fully dense microstructures (relative densities of up to ≈99%), similar grain sizes, clean grain boundaries, and uniform compositions. With the elimination of these morphological properties, the monotonic enhancement of Vickers hardness and nanohardness of the as-fabricated 4-8HEC samples is found to be driven by the aggravation of lattice distortion. Further studies show no evident association between the enhanced hardness of the as-fabricated 4-8HEC samples and other potential indicators, including bond strength, valence electron concentration, electronegativity mismatch, and metallic states. The work unveils the underlying hardening mechanisms of HECs and offers an effective strategy for designing superhard HECs.
RESUMO
The application of lithium metal anode in all-solid-state batteries has the potential to achieve both high energy density and safety performance. However, the presence of serious dendrite issues hinders this potential. Here, the ion transport pathways and orientation of dendrite growth are regulated by utilizing the differences of ionic conductivity in heterogeneous electrolytes. The in situ formed Li-Ge alloy phases from the spontaneous reaction between Li10GeP2S12 and the attracted dendrites greatly enhance the ability to resist dendrite growth. As an outcome, the heterogeneous electrolyte achieves a high critical current density of 2.1 mA cm-2 and long-term stable symmetrical battery operation (0.3 mA cm-2 for 17 000 h and 1.0 mA cm-2 for 2000 h). Besides, due to the superior interfacial stability and low interface impedance between the heterogeneous electrolyte and lithium anode, the Li||LiNi0.8Co0.1Mn0.1O2 full battery exhibits great cycling stability (80.5% after 500 cycles at 1.0 mA cm-2) and rate performance (125.4 mAh g at 2.0 mA cm-2). This work provides a unique strategy of interface regulation via heterogeneous electrolytes design, offering insights into the development of state-of the-art all-solid-state batteries.
RESUMO
Large-bandwidth pulses produced by cutting-edge X-ray free-electron lasers (FELs) are of great importance in research fields like material science and biology. In this paper, a new method to generate high-power ultrashort FEL pulses with tunable spectral bandwidth with spectral coherence using a dielectric-lined waveguide without interfering operation of linacs is proposed. By exploiting the passive and dephasingless wakefield at terahertz frequency excited by the beam, stable energy modulation can be achieved in the electron beam and large-bandwidth high-intensity soft X-ray radiation can be generated. Three-dimensional start-to-end simulations have been carried out and the results show that coherent radiation pulses with duration of a few femtoseconds and bandwidths ranging from 1.01% to 2.16% can be achieved by changing the undulator taper profile.
RESUMO
Subtropical evergreen broadleaved forests distributed in montane zones of southern China experience seasonal droughts and winter frost. Previously, studies have recognized that xylem anatomy is a determinant of its vulnerability to embolism caused by drought and freezing events. We hypothesized that there is a coordination of xylem resistance to freeze-thaw and drought-induced embolism for the subtropical montane evergreen broadleaved tree species because they are influenced by common xylem structural traits (e.g., vessel diameter). We examined the branch xylem anatomy, resistance to drought-induced embolism (P50), and the percent loss of branch hydraulic conductivity after a severe winter frost (PLCwinter) for 15 evergreen broadleaved tree species in a montane forest in South China. Our results showed that P50 of the studied species ranged from -2.81 to -5.13 MPa, which was not associated with most xylem anatomical properties except for the axial parenchyma-to-vessel connectivity. These tree species differed substantially in PLCwinter, ranging from 0% to 76.41%. PLCwinter was positively related to vessel diameter and negatively related to vessel density, vessel group index, and vessel-to-vessel connectivity, but no coordination with P50. This study suggests that hydraulic adaptation to frost is important to determine the distributional limit of subtropical montane evergreen woody angiosperms.
Assuntos
Secas , Congelamento , Magnoliopsida , Árvores , Xilema , Xilema/fisiologia , Xilema/anatomia & histologia , Árvores/fisiologia , Magnoliopsida/fisiologia , Magnoliopsida/anatomia & histologia , China , Estações do Ano , Água/metabolismo , Água/fisiologiaRESUMO
The mitigation of nitrous oxide (N2O) is of primary significance to offset carbon footprints in aerobic granular sludge (AGS) systems. However, a significant knowledge gap still exists regarding the N2O production mechanism and its pathway contribution. To address this issue, the impact of varying granule sizes, dissolved oxygen (DO), and nitrite (NO2-) levels on N2O production by ammonia-oxidizing bacteria (AOB) during nitrification in AGS systems was comprehensively investigated. Biochemical and isotopic experiments revealed that increasing DO or decreasing NO2- levels reduced N2O emission factors (by 13.8 or 19.5%) and production rates (by 0.08 or 0.35 mg/g VSS/h) via weakening the role of the AOB denitrification pathway since increasing DO competed for more electrons required for AOB denitrification. Smaller granules (0.5 mm) preferred to diminish N2O production via enhancing the role of NH2OH pathway (i.e., 59.4-100% in the absence of NO2-), while larger granules (2.0 mm) induced conspicuously higher N2O production via the AOB denitrification pathway (approximately 100% at higher NO2- levels). Nitrifying AGS systems with a unified size of 0.5 mm achieved 42% N2O footprint reduction compared with the system with mixed sizes (0.5-2.0 mm) under optimal conditions (DO = 3.0 mg-O2/L and NO2- = 0 mg-N/L).
Assuntos
Amônia , Bactérias , Amônia/análise , Amônia/metabolismo , Bactérias/metabolismo , Dióxido de Nitrogênio/análise , Reatores Biológicos/microbiologia , Oxirredução , Nitrificação , Esgotos/microbiologia , Óxido Nitroso/análise , Oxigênio/análise , DesnitrificaçãoRESUMO
Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.
Assuntos
Microplásticos , Óxido Nitroso , Óxido Nitroso/análise , Plásticos , Cloreto de Polivinila/metabolismo , Desnitrificação , Eliminação de Resíduos Líquidos , Reatores Biológicos , Esgotos , OxirreduçãoRESUMO
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Assuntos
Esgotos , Anaerobiose , Preparações Farmacêuticas/metabolismo , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos , CosméticosRESUMO
Anaerobic ammonium oxidation (anammox) is efficient and cost-effective for treating high-strength ammonia wastewater, but the organics in wastewater will affect its stability. To address this challenge, it is crucial to gain a deep understanding of the inhibitory effects and mechanisms of organics stress on anammox bacteria. The review provided a comprehensive classification of organics and evaluated their specific effects on the anammox system according to their respective characteristics. Based on the micro to macro perspective, the "molecule-cell-ecology" inhibitory mechanism of organics on anammox bacteria was proposed. The molecular observation systematically summarized the binding process and action sites of organics with anammox bacteria. At the cellular observation, the mechanisms of organics effects on extracellular polymeric substances, membranes, and anammoxosome of anammox bacteria were also expounded. At the ecological observation, the dynamic changes in coexisting populations and their role in organics transformation were further discussed. Further revelations on response mechanisms and inhibition mitigation strategies were proposed to broaden the applicability of anammox systems for organic wastewater. This review offered a multidimensional understanding of the organics inhibitory mechanism of anammox bacteria and provided a theoretical foundation for anammox systems.
RESUMO
BACKGROUND: Numerous single nutrients have been suggested to be linked with leukocyte telomere length (LTL). However, data on nutrient patterns (NPs), particularly in Chinese population, are scarce. This study aimed to examine the relationship between nutrient-based dietary patterns and LTL, and the potential role of metabolic factors. METHODS: Dietary data was obtained via 24-hour food recalls, and principal component analysis (PCA) was used to identify NPs. LTL was assessed using a real-time PCR assay. Multiple linear regression was conducted to determine the association between NPs and LTL. The potential role of metabolism among them was analyzed using mediation models. RESULTS: A total of 779 individuals from northern China were included in this cross-sectional analysis. Five main nutrient patterns were identified. Adjusted linear regression showed that the "high sodium" pattern was inversely associated with LTL (B=-0.481(-0.549, -0.413), P < 0.05). The "high vitamin E-fat" pattern exhibited a positive correlation (B = 0.099(0.029, 0.170), P < 0.05), whereas the "high vitamin A-vitamin B2" pattern was negatively correlated with LTL (B=-0.120(-0.183, -0.057), P < 0.05), respectively. No significant associations were observed for the remaining nutrient patterns. The mediation model demonstrated that diastolic blood pressure and waist circumference could individually and collectively mediate the negative impact of the "high sodium" pattern on LTL (BDBP=-0.0173(-0.0333, -0.0041), BWC=-0.0075(-0.0186, -0.0004), Bjoint=-0.0033 (-0.0072, -0.0006), all P < 0.05). Moreover, glycosylated hemoglobin and non-high-density lipoprotein cholesterol mediate the relationship between the "high vitamin E-fat" pattern and LTL (BHbA1c=0.0170(0.0010,0.0347), Bnon-HDL-C= 0.0335 (0.0067, 0.0626), all P < 0.05), respectively. CONCLUSIONS: The "high sodium" and "high vitamin E-fat" nutrient patterns demonstrated negative and positive associations with LTL and metabolic indicators may play complex mediating roles in these relationships.
Assuntos
Pressão Sanguínea , Telômero , Circunferência da Cintura , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Pressão Sanguínea/fisiologia , Adulto , China , Sódio na Dieta , Dieta , Idoso , Leucócitos/metabolismo , Leucócitos/fisiologia , Homeostase do Telômero/fisiologiaRESUMO
Realization of high-quality van der Waals (vdWs) heterostructures by stacking two-dimensional (2D) layers requires atomically clean interfaces. Because of strong adhesion between the constituent layers, the vdWs forces could drive trapped contaminants together into submicron-size "bubbles", which leaves large interfacial areas atomically clean. Here, we study the kinetics of nanobubbles in tiny-angle twisted bilayer graphene (TBG) and our results reveal a substantial influence of the moiré superlattice on the motion of nanoscale interfacial substances. Our experiments indicate that the bubbles will mainly move along the triangular network of domain boundaries in the tiny-angle TBG when the sizes of the bubbles are comparable to that of an AA-stacking region. When the size of the bubble is smaller than that of an AA-stacking region, the bubble becomes motionless and is fixed in the AA-stacking region, because of its large out-of-plane corrugation.
RESUMO
In two-dimensional small-angle twisted bilayers, van der Waals (vdW) interlayer interaction introduces an atomic-scale reconstruction, which consists of a moiré-periodic network of local subdegree lattice rotations. However, real-space measurement of the subdegree lattice rotation requires extremely high spatial resolution, which is an outstanding challenge in an experiment. Here, a topmost small-period graphene moiré pattern is introduced as a magnifying lens to magnify sub-Angstrom lattice distortions in small-angle twisted bilayer graphene (TBG) by about 2 orders of magnitude. Local moiré periods of the topmost graphene moiré patterns and low-energy van Hove singularities of the system are spatially modified by the atomic-scale reconstruction of the underlying TBG, thus enabling real-space mapping of the networks of the subdegree lattice rotations both in structure and in electronic properties. Our results indicate that it is quite facile to study subdegree lattice rotation in vdW systems by measuring the periods of the topmost moiré superlattice.
RESUMO
The production of short-chain fatty acids (SCFAs) through anaerobic fermentation of waste activated sludge (WAS) is commonly constrained by limited substrate availability, particularly for WAS with low organic content. Combining the hydrocyclone (HC) selection with alkali-thermal (AT) pretreatment is a promising solution to address this limitation. The results indicated that HC selection modified the sludge properties by enhancing the ratio of mixed liquid volatile suspended solids (MLVSS)/mixed liquid suspended solids (MLSS) by 19.0% and decreasing the mean particle size by 17.4%, which were beneficial for the subsequent anaerobic fermentation process. Under the optimal HC + AT condition, the peak value of SCFAs production reached 4951.9 mg COD/L, representing a 23.2% increase compared to the raw sludge with only AT pretreatment. Mechanism investigations revealed such enhancement beyond mechanical separation. It involved an increase in bound extracellular polymeric substances (EPS) through HC selection and the disruption of sludge spatial structure by AT pretreatment. Consequently, this combination pretreatment accelerated the transfer of particulate organics (i.e., bound EPS and intracellular components) to the supernatant, thus increasing the accessibility of WAS substrate to hydrolytic and acidifying bacteria. Furthermore, the microbial structure was altered with the enrichment of key functional microorganisms, probably due to the facilitation of substrate biotransformation and product output. Meanwhile, the activity of hydrolases and SCFAs-forming enzymes increased, while that of methanogenic enzymes decreased. Overall, this strategy successfully enhanced SCFAs production from WAS while reducing the environmental risks of WAS disposal.
Assuntos
Álcalis , Ácidos Graxos Voláteis , Fermentação , Esgotos , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Álcalis/química , Eliminação de Resíduos Líquidos/métodosRESUMO
BACKGROUND: Mouse, chick, and zebrafish undergo a highly conserved program of cartilage maturation during endochondral ossification (bone formation via a cartilage template). Standard histological and molecular features of cartilage maturation are chondrocyte hypertrophy, downregulation of the chondrogenic markers Sox9 and Col2a1, and upregulation of Col10a1. We tested whether cartilage maturation is conserved in an amphibian, the western clawed frog Xenopus tropicalis, using in situ hybridization for standard markers and a novel laser-capture microdissection RNAseq data set. We also functionally tested whether thyroid hormone drives cartilage maturation in X tropicalis, as it does in other vertebrates. RESULTS: The developing frog humerus mostly followed the standard progression of cartilage maturation. Chondrocytes gradually became hypertrophic as col2a1 and sox9 were eventually down-regulated, but col10a1 was not up-regulated. However, the expression levels of several genes associated with the early formation of cartilage, such as acan, sox5, and col9a2, remained highly expressed even as humeral chondrocytes matured. Greater deviances were observed in head cartilages, including the ceratohyal, which underwent hypertrophy within hours of becoming cartilaginous, maintained relatively high levels of col2a1 and sox9, and lacked col10a1 expression. Interestingly, treating frog larvae with thyroid hormone antagonists did not specifically reduce head cartilage hypertrophy, resulting rather in a global developmental delay. CONCLUSION: These data reveal that basic cartilage maturation features in the head, and to a lesser extent in the limb, are not conserved in X tropicalis. Future work revealing how frogs deviate from the standard cartilage maturation program might shed light on both evolutionary and health studies.
Assuntos
Cartilagem , Peixe-Zebra , Camundongos , Animais , Camundongos Transgênicos , Condrócitos/metabolismo , Anfíbios , Hipertrofia , Diferenciação CelularRESUMO
PURPOSE: To compare image quality, iodine intake, and radiation dose in overweight and obese patients undergoing abdominal computed tomography (CT) enhancement using different scanning modes and contrast medium. METHODS: Ninety overweight and obese patients (25âkg/m2≤body mass index (BMI)<â30âkg/m2 and BMI≥30âkg/m2) who underwent abdominal CT-enhanced examinations were randomized into three groups (A, B, and C) of 30 each and scanned using gemstone spectral imaging (GSI) +320âmgI/ml, 100âkVp + 370âmgI/ml, and 120âkVp + 370âmgI/ml, respectively. Reconstruct monochromatic energy images of group A at 50-70âkeV (5âkeV interval). The iodine intake and radiation dose of each group were recorded and calculated. The CT values, contrast-to-noise ratios (CNRs), and subjective scores of each subgroup image in group A versus images in groups B and C were by using one-way analysis of variance or Kruskal-Wallis H test, and the optimal keV of group A was selected. RESULTS: The dual-phase CT values and CNRs of each part in group A were higher than or similar to those in groups B and C at 50-60âkeV, and similar to or lower than those in groups B and C at 65âkeV and 70âkeV. The subjective scores of the dual-phase images in group A were lower than those of groups B and C at 50âkeV and 55âkeV, whereas no significant difference was seen at 60-70âkeV. Compared to groups B and C, the iodine intake in group A decreased by 12.5% and 13.3%, respectively. The effective doses in groups A and B were 24.7% and 25.8% lower than those in group C, respectively. CONCLUSION: GSI +320âmgI/ml for abdominal CT-enhanced in overweight patients satisfies image quality while reducing iodine intake and radiation dose, and the optimal keV was 60âkeV.
Assuntos
Meios de Contraste , Obesidade , Sobrepeso , Radiografia Abdominal , Tomografia Computadorizada por Raios X , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico por imagem , Sobrepeso/diagnóstico por imagem , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: Auriculocondylar syndrome (ARCND) is an extremely rare autosomal dominant or recessive condition that typically manifests as question mark ears (QMEs), mandibular condyle hypoplasia, and micrognathia. Severe dental and maxillofacial malformations present considerable challenges in patients' lives and clinical treatment. Currently, only a few ARCND cases have been reported worldwide, but most of them are related to genetic mutations, clinical symptoms, and ear correction; there are few reports concerning the treatment of dentofacial deformities. CASE PRESENTATION: Here, we report a rare case of ARCND in a Chinese family. A novel insertional mutation in the guanine nucleotide-binding protein alpha-inhibiting activity polypeptide 3 (GNAI3) was identified in the patient and their brother using whole-exome sequencing. After a multidisciplinary consultation and examination, sequential orthodontic treatment and craniofacial surgery, including distraction osteogenesis and orthognathic surgery, were performed using three-dimensional (3D) digital technology to treat the patient's dentofacial deformity. A good prognosis was achieved at the 5-year follow-up, and the patient returned to normal life. CONCLUSIONS: ARCND is a monogenic and rare condition that can be diagnosed based on its clinical triad of core features. Molecular diagnosis plays a crucial role in the diagnosis of patients with inconspicuous clinical features. We present a novel insertion variation in GNAI3, which was identified in exon 2 of chromosome 110116384 in a Chinese family. Sequential therapy with preoperative orthodontic treatment combined with distraction osteogenesis and orthognathic surgery guided by 3D digital technology may be a practical and effective method for treating ARCND.
Assuntos
Deformidades Dentofaciais , Humanos , Masculino , Deformidades Dentofaciais/genética , Deformidades Dentofaciais/cirurgia , Seguimentos , Otopatias/genética , Otopatias/cirurgia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Linhagem , Orelha/anormalidades , Osteogênese por Distração/métodos , Mutação , Procedimentos Cirúrgicos Ortognáticos , China , População do Leste AsiáticoRESUMO
Poly(vinylidene fluoride) (PVDF)-based polymer electro-lytes are attracting increasing attention for high-voltage solid-state lithium metal batteries because of their high room temperature ionic conductivity, adequate mechanical strength and good thermal stability. However, the presence of highly reactive residual solvents, such as N, N-dimethylformamide (DMF), severely jeopardizes the long-term cycling stability. Herein, we propose a solvation-tailoring strategy to confine residual solvent molecules by introducing low-cost 3â Å zeolite molecular sieves as fillers. The strong interaction between DMF and the molecular sieve weakens the ability of DMF to participate in the solvation of Li+, leading to more anions being involved in solvation. Benefiting from the tailored anion-rich coordination environment, the interfacial side reactions with the lithium anode and high-voltage NCM811 cathode are effectively suppressed. As a result, the solid-state Li||Li symmetrical cells demonstrates ultra-stable cycling over 5100â h at 0.1â mA cm-2, and the Li||NCM811 full cells achieve excellent cycling stability for more than 1130 and 250 cycles under the charging cut-off voltages of 4.3â V and 4.5â V, respectively. Our work is an innovative exploration to address the negative effects of residual DMF in PVDF-based solid-state electrolytes and highlights the importance of modulating the solvation structures in solid-state polymer electrolytes.
RESUMO
Combining high-voltage nickel-rich cathodes with lithium metal anodes is among the most promising approaches for achieving high-energy-density lithium batteries. However, most current electrolytes fail to simultaneously satisfy the compatibility requirements for the lithium metal anode and the tolerance for the ultra-high voltage NCM811 cathode. Here, we have designed an ultra-oxidation-resistant electrolyte by meticulously adjusting the composition of fluorinated carbonates. Our study reveals that a solid-electrolyte interphase (SEI) rich in LiF and Li2O is constructed on the lithium anode through the synergistic decomposition of the fluorinated solvents and PF6 - anion, facilitating smooth lithium metal deposition. The superior oxidation resistance of our electrolyte enables the Li||NCM811â cell to deliver a capacity retention of 80 % after 300â cycles at an ultrahigh cut-off voltage of 4.8â V. Additionally, a pioneering 4.8â V-class lithium metal pouch cell with an energy density of 462.2â Wh kg-1 stably cycles for 110â cycles under harsh conditions of high cathode loading (30â mg cm-2), low N/P ratio (1.18), and lean electrolytes (2.3â g Ah-1).