Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Mater ; 21(3): 325-330, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027719

RESUMO

Hydrogen transport in solids, applied in electrochemical devices such as fuel cells and electrolysis cells, is key to sustainable energy societies. Although using proton (H+) conductors is an attractive choice, practical conductivity at intermediate temperatures (200-400 °C), which would be ideal for most energy and chemical conversion applications, remains a challenge. Alternatively, hydride ions (H-), that is, monovalent anions with high polarizability, can be considered a promising charge carrier that facilitates fast ionic conduction in solids. Here, we report a K2NiF4-type Ba-Li oxyhydride with an appreciable amount of hydrogen vacancies that presents long-range order at room temperature. Increasing the temperature results in the disappearance of the vacancy ordering, triggering a high and essentially temperature-independent H- conductivity of more than 0.01 S cm-1 above 315 °C. Such a remarkable H- conducting nature at intermediate temperatures is anticipated to be important for energy and chemical conversion devices.


Assuntos
Eletrólitos , Prótons , Condutividade Elétrica , Transporte de Íons , Íons
2.
Nat Mater ; 21(5): 555-563, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301475

RESUMO

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Assuntos
Polímeros , Água , Ânions , Troca Iônica , Íons , Membranas Artificiais , Polímeros/química , Água/química
3.
Small ; 16(11): e1906812, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32091177

RESUMO

Failure mechanisms associated with silicon-based anodes are limiting the implementation of high-capacity lithium-ion batteries. Understanding the aging mechanism that deteriorates the anode performance and introducing novel-architectured composites offer new possibilities for improving the functionality of the electrodes. Here, the characterization of nano-architectured composite anode composed of active amorphous silicon domains (a-Si, 20 nm) and crystalline iron disilicide (c-FeSi2 , 5-15 nm) alloyed particles dispersed in a graphite matrix is reported. This unique hierarchical architecture yields long-term mechanical, structural, and cycling stability. Using advanced electron microscopy techniques, the nanoscale morphology and chemical evolution of the active particles upon lithiation/delithiation are investigated. Due to the volumetric variations of Si during lithiation/delithiation, the morphology of the a-Si/c-FeSi2 alloy evolves from a core-shell to a tree-branch type structure, wherein the continuous network of the active a-Si remains intact yielding capacity retention of 70% after 700 cycles. The root cause of electrode polarization, initial capacity fading, and electrode swelling is discussed and has profound implications for the development of stable lithium-ion batteries.

4.
Soft Matter ; 11(12): 2469-78, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25674917

RESUMO

We present a coarse-grained model for ionic surfactants in explicit aqueous solutions, and study by computer simulation both the impact of water content on the morphology of the system, and the consequent effect of the formed interfaces on the structural features of the absorbed fluid. On increasing the hydration level under ambient conditions, the model exhibits a series of three distinct phases: lamellar, cylindrical and micellar. We characterize the different structures in terms of diffraction patterns and neutron scattering static structure factors. We demonstrate that the rate of variation of the nano-metric sizes of the self-assembled water domains shows peculiar changes in the different phases. We also analyse in depth the structure of the water/confining matrix interfaces, the implications of their tunable degree of curvature, and the properties of water molecules in different restricted environments. Finally, we compare our results with experimental data and their impact on a wide range of important scientific and technological domains, where the behavior of water at the interface with soft materials is crucial.

5.
ACS Energy Lett ; 8(8): 3323-3329, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588015

RESUMO

With the advent of high-brilliance synchrotron sources, the issue of beam damage on the samples deserves proper attention. It is especially true for operando studies in batteries, since the intense photon fluxes are commonly used to probe ever finer effects. Here we report on the causes and consequences of synchrotron X-ray beam damage in batteries, based on the case study of operando X-ray diffraction. We show that beam damage is caused by the mingled actions of dose and dose rate. The aftereffects can lie in a broad range, from mild modifications of the crystalline structure to artificial phase transitions, and can thus impede or bias the understanding of the mechanisms at play. We estimate the doses at which the different effects appear in two materials, suggesting that it could be expanded to other materials with the same technology. We also provide recommendations for the design of operando synchrotron experiments.

6.
ACS Macro Lett ; 11(8): 982-990, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35833851

RESUMO

The presence of fluorine, especially in the electrolyte, frequently has a beneficial effect on the performance of lithium batteries owing to, for instance, the stabilization of the interfaces and interphases with the positive and negative electrodes. However, the presence of fluorine is also associated with reduced recyclability and low biodegradability. Herein, we present a single-ion conducting multiblock copolymer electrolyte comprising a fluorine-free backbone and compare it with the fluorinated analogue reported earlier. Following a comprehensive physicochemical and electrochemical characterization of the copolymer with the fluorine-free backbone, the focus of the comparison with the fluorinated analogue was particularly on the electrochemical stability toward oxidation and reduction as well as the reactions occurring at the interface with the lithium-metal electrode. To deconvolute the impact of the fluorine in the ionic side chain and the copolymer backbone, suitable model compounds were identified and studied experimentally and theoretically. The results show that the absence of fluorine in the backbone has little impact on the basic electrochemical properties, such as the ionic conductivity, but severely affects the electrochemical stability and interfacial stability. The results highlight the need for a very careful design of the whole polymer for each desired application, essentially, just like for liquid electrolytes.


Assuntos
Lítio , Polímeros , Eletrólitos/química , Fluoretos , Flúor , Halogenação , Lítio/química
7.
ACS Nano ; 16(6): 9819-9829, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35613437

RESUMO

Germanium is a promising active material for high energy density anodes in Li-ion batteries thanks to its good Li-ion conduction and mechanical properties. However, a deep understanding of the (de)lithiation mechanism of Ge requires advanced characterizations to correlate structural and chemical evolution during charge and discharge. Here we report a combined operando X-ray diffraction (XRD) and ex situ 7Li solid-state NMR investigation performed on crystalline germanium nanoparticles (c-Ge Nps) based anodes during partial and complete cycling at C/10 versus Li metal. High-resolution XRD data, acquired along three successive partial cycles, revealed the formation process of crystalline core-amorphous shell particles and their associated strain behavior, demonstrating the reversibility of the c-Ge lattice strain, unlike what is observed in the crystalline silicon nanoparticles. Moreover, the crystalline and amorphous lithiated phases formed during a complete lithiation cycle are identified. Amorphous Li7Ge3 and Li7Ge2 are formed successively, followed by the appearance of crystalline Li15Ge4 (c-Li15Ge4) at the end of lithiation. These results highlight the enhanced mechanical properties of germanium compared to silicon, which can mitigate pulverization and increase structural stability, in the perspective for developing high-performance anodes.

8.
J Phys Condens Matter ; 33(26)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33906172

RESUMO

Design and implementation of advanced membrane formulations for selective transport of ions and molecular species are critical for creating the next generations of fuel cells and separation devices. It is necessary to understand the detailed transport mechanisms over time- and length-scales relevant to the device operation, both in laboratory models and in working systems under realistic operational conditions. Neutron scattering techniques including quasi-elastic neutron scattering, reflectivity and imaging are implemented at beamline stations at reactor and spallation source facilities worldwide. With the advent of new and improved instrument design, detector methodology, source characteristics and data analysis protocols, these neutron scattering techniques are emerging as a primary tool for research to design, evaluate and implement advanced membrane technologies for fuel cell and separation devices. Here we describe these techniques and their development and implementation at the ILL reactor source (Institut Laue-Langevin, Grenoble, France) and ISIS Neutron and Muon Spallation source (Harwell Science and Technology Campus, UK) as examples. We also mention similar developments under way at other facilities worldwide, and describe approaches such as combining optical with neutron Raman scattering and x-ray absorption with neutron imaging and tomography, and carrying out such experiments in specialised fuel cells designed to mimic as closely possible actualoperandoconditions. These experiments and research projects will play a key role in enabling and testing new membrane formulations for efficient and sustainable energy production/conversion and separations technologies.

9.
Chem Sci ; 12(48): 15916-15927, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024115

RESUMO

Molecular catalysts show powerful catalytic efficiency and unsurpassed selectivity in many reactions of interest. As their implementation in electrocatalytic devices requires their immobilization onto a conductive support, controlling the grafting chemistry and its impact on their distribution at the surface of this support within the catalytic layer is key to enhancing and stabilizing the current they produce. This study focuses on molecular bioinspired nickel catalysts for hydrogen oxidation, bound to carbon nanotubes, a conductive support with high specific area. We couple advanced analysis by transmission electron microscopy (TEM), for direct imaging of the catalyst layer on individual nanotubes, and small angle neutron scattering (SANS), for indirect observation of structural features in a relevant aqueous medium. Low-dose TEM imaging shows a homogeneous, mobile coverage of catalysts, likely as a monolayer coating the nanotubes, while SANS unveils a regular nanostructure in the catalyst distribution on the surface with agglomerates that could be imaged by TEM upon aging. Together, electrochemistry, TEM and SANS analyses allowed drawing an unprecedented and intriguing picture with molecular catalysts evenly distributed at the nanoscale in two different populations required for optimal catalytic performance.

10.
ChemSusChem ; 14(2): 655-661, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32946204

RESUMO

The development of new materials for tomorrow's electrochemical energy storage technologies, based on thoroughly designed molecular architectures is at the forefront of materials research. In this line, we report herein the development of a new class of organic lithium-ion battery electrolytes, thermotropic liquid crystalline single-ion conductors, for which the single-ion charge transport is decoupled from the molecular dynamics (i. e., obeys Arrhenius-type conductivity) just like in inorganic (single-)ion conductors. Focusing on an in-depth understanding of the structure-to-transport interplay and the demonstration of the proof-of-concept, we provide also strategies for their further development, as illustrated by the introduction of additional ionic groups to increase the charge carrier density, which results in a substantially enhanced ionic conductivity especially at lower temperatures.

11.
ChemSusChem ; 13(3): 590-600, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793224

RESUMO

Designing highly conductive ionomers at high temperature and low relative humidity is challenging in proton-exchange membrane fuel cells. Perfluorosulfonyl imide ionomers were believed to achieve this goal, owing to their exceptional acidity and excellent thermal stability. Perfluorosulfonyl imide ionomers are less conductive than the analogous perfluorosulfonic acids despite similar membrane microstructure. In this study, the distinct behavior is rationalized by in situ synchrotron infrared spectroscopy during hydration. The protonation mechanism, formation of the protonic moiety and water clustering are totally different for the two different families of membranes. The ionization mediated by trans-to-cis conformational transition of the perfluorosulfonyl imide ionomer is not accompanied by the formation of hydronium ions. In contrast, Zundel-ion entities were identified as the elementary protonic complex, which is stable over the hydration range. The H-bond network of surrounding water molecules appears to be less connected and the protons remain highly localized and unavailable for efficient structural transport. The delocalization of protons and their mitigated interaction with the surrounding medium are prominent effects that negatively impact conductivity.

12.
Commun Chem ; 3(1): 141, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36703381

RESUMO

Advanced anode material designs utilizing dual phase alloy systems like Si/FeSi2 nano-composites show great potential to decrease the capacity degrading and improve the cycling capability for Lithium (Li)-ion batteries. Here, we present a multi-scale characterization approach to understand the (de-)lithiation and irreversible volumetric changes of the amorphous silicon (a-Si)/crystalline iron-silicide (c-FeSi2) nanoscale phase and its evolution due to cycling, as well as their impact on the proximate pore network. Scattering and 2D/3D imaging techniques are applied to probe the anode structural ageing from nm to µm length scales, after up to 300 charge-discharge cycles, and combined with modeling using the collected image data as an input. We obtain a quantified insight into the inhomogeneous lithiation of the active material induced by the morphology changes due to cycling. The electrochemical performance of Li-ion batteries does not only depend on the active material used, but also on the architecture of its proximity.

13.
ACS Nano ; 13(10): 11538-11551, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31560519

RESUMO

The (de)lithiation process and resulting atomic and nanoscale morphological changes of an a-Si/c-FeSi2/graphite composite negative electrode are investigated within a Li-ion full cell at several current rates (C-rates) and after prolonged cycling by simultaneous operando synchrotron wide-angle and small-angle X-ray scattering (WAXS and SAXS). WAXS allows the probing of the local crystalline structure. In particular, the observation of the graphite (de)lithiation process, revealed by the LixC6 Bragg reflections, enables access to the respective capacities of both graphite and active silicon. Simultaneously and independently, information on the silicon state of (de)lithiation and nanoscale morphology (1 to 60 nm) is obtained through SAXS. During lithiation, the SAXS intensity in the region corresponding to characteristic distances within the a-Si/c-FeSi2 domains increases. The combination of the SAXS/WAXS measurements over the course of several charge/discharge cycles, in pristine and aged electrodes, provides a complete picture of the C-rate-dependent sequential (de)lithiation mechanism of the a-Si/c-FeSi2/graphite anode. Our results indicate that, within the composite electrode, the active silicon volume does not increase linearly with lithium insertion and point toward the important role of the electrode morphology to accommodate the nanoscale silicon expansion, an effect that remains beneficial after cell aging and most probably explains the excellent performance of the composite material.

14.
ChemSusChem ; 11(23): 4033-4043, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251343

RESUMO

The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.86 to 3.50 meq g-1 and exhibited proton conductivities of up to 338 mS cm-1 (80 °C, 95 % relative humidity). Small-angle X-ray scattering and small-angle neutron scattering were used to elucidate the effect of the monomer ratios on the polymer morphology. The utility of these materials as low gas crossover, highly conductive membranes was demonstrated in fuel cell devices. Gas crossover currents through the membranes of as low as 4 % (0.16±0.03 mA cm-2 ) for a perfluorosulfonic acid reference membrane were demonstrated. As ionomers in the catalyst layer, the copolymers yielded highly active porous electrodes and overcame kinetic losses typically observed for hydrocarbon-based catalyst layers. Fully hydrocarbon, nonfluorous, solid polymer electrolyte fuel cells are demonstrated with peak power densities of 770 mW cm-2 with oxygen and 456 mW cm-2 with air.

15.
Magn Reson Imaging ; 25(4): 501-4, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17466773

RESUMO

The dynamic behavior of water within two types of ionomer membranes, Nafion and sulfonated polyimides, has been investigated by field-cycling nuclear magnetic relaxation. This technique, applied to materials prepared at different hydration levels, allows to probe the proton motion on a time scale of the microsecond. The NMR longitudinal relaxation rate R(1) measured over three decades of Larmor angular frequencies omega is particularly sensitive to the host-water interactions and thus well suited to study fluid dynamics in restricted geometries. In the polyimide membranes, we have observed a strong dispersion of R(1)(omega) following closely a 1/sqrt[omega] law in a low-frequency range (correlation times from 0.1 to 10 micros). This is indicative of a strong interaction of water with "interfacial" hydrophilic groups of the polymeric matrix (wetting situation). On the contrary, in the Nafion, we observed weak variations of R(1)(omega) at low frequency. This is typical of a nonwetting behavior. At early hydration stages, the proton-proton inter-dipolar contribution to R(1)(omega) evolves logarithmically, suggesting a confined bidimensional diffusion of protons in the microsecond time range. Such an evolution is lost at higher swelling where a plateau related to 3D diffusion is observed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Membranas Artificiais , Água/química , Anisotropia , Difusão , Polímeros de Fluorcarboneto/química , Umidade , Estrutura Molecular , Polímeros/química , Porosidade , Prótons , Fatores de Tempo
16.
Sci Rep ; 7(1): 8326, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827621

RESUMO

We investigate the dynamics of water confined in soft ionic nano-assemblies, an issue critical for a general understanding of the multi-scale structure-function interplay in advanced materials. We focus in particular on hydrated perfluoro-sulfonic acid compounds employed as electrolytes in fuel cells. These materials form phase-separated morphologies that show outstanding proton-conducting properties, directly related to the state and dynamics of the absorbed water. We have quantified water motion and ion transport by combining Quasi Elastic Neutron Scattering, Pulsed Field Gradient Nuclear Magnetic Resonance, and Molecular Dynamics computer simulation. Effective water and ion diffusion coefficients have been determined together with their variation upon hydration at the relevant atomic, nanoscopic and macroscopic scales, providing a complete picture of transport. We demonstrate that confinement at the nanoscale and direct interaction with the charged interfaces produce anomalous sub-diffusion, due to a heterogeneous space-dependent dynamics within the ionic nanochannels. This is irrespective of the details of the chemistry of the hydrophobic confining matrix, confirming the statistical significance of our conclusions. Our findings turn out to indicate interesting connections and possibilities of cross-fertilization with other domains, including biophysics. They also establish fruitful correspondences with advanced topics in statistical mechanics, resulting in new possibilities for the analysis of Neutron scattering data.

17.
ACS Appl Mater Interfaces ; 9(2): 1671-1683, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27966862

RESUMO

Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.

18.
ACS Nano ; 11(11): 11306-11316, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29111665

RESUMO

Operando Raman spectroscopy and synchrotron X-ray diffraction were combined to probe the evolution of strain in Li-ion battery anodes made of crystalline silicon nanoparticles. The internal structure of the nanoparticles during two discharge/charge cycles was evaluated by analyzing the intensity and position of Si diffraction peaks and Raman TO-LO phonons. Lithiation/delithiation of the silicon under limited capacity conditions triggers the formation of "crystalline core-amorphous shell" particles, which we evidenced as a stepwise decrease in core size, as well as sequences of compressive/tensile strain due to the stress applied by the shell. In particular, we showed that different sequences occur in the first and the second cycle, due to different lithiation processes. We further evidenced critical experimental conditions for accurate operando Raman spectroscopy measurements due to the different heat conductivity of lithiated and delithiated Si. Values of the stress extracted from both operando XRD and Raman are in excellent agreement. Long-term ex situ measurements confirmed the continuous increase of the internal compressive strain, unfavorable to the Si lithiation and contributing to the capacity fading. Finally, a simple mechanical model was used to estimate the sub-nanometer thickness of the interfacial shell applying the stress on the crystalline core. Our complete operando diagnosis of the strain and stress in SiNPs provides both a detailed scenario of the mechanical consequences of lithiation/delithiation in SiNP and also experimental values that are much needed for the benchmarking of theoretical models and for the further rational design of SiNP-based electrodes.

19.
J Phys Chem B ; 110(23): 11217-23, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16771387

RESUMO

A simple model based on Gaussian statistics, aimed at describing localized diffusive translational motion in one, two, and three dimensions is presented and used to calculate the corresponding incoherent neutron scattering laws. In the time domain, these laws are closed form mathematical functions. In the frequency domain, some of these laws can be expressed as an infinite series depending on one single index. Owing to this relative simplicity, such a model can advantageously replace previous models such as diffusion on a segment, inside a circle and inside a sphere with an impermeable surface, to analyze neutron quasielastic scattering data associated with molecular motions in confined media. It may also be more realistic when the confinement is defined by soft, ill-defined boundaries.

20.
J Phys Chem B ; 110(11): 5439-44, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539481

RESUMO

The dynamic behavior of water within two types of ionomer membranes, Nafion and sulfonated polyimide, has been investigated by field-cycling nuclear magnetic relaxation. This technique, applied to materials prepared at different hydration levels, allows the proton motion on a time scale of microseconds to be probed. The NMR longitudinal relaxation rate R(1) measured over three decades of Larmor angular frequencies omega is particularly sensitive to the host-water interactions and thus well-suited to study fluid dynamics in restricted geometries. In the polyimide membranes, we have observed a strong dispersion of R(1)(omega) following closely a 1/square root omega law in a low-frequency range (correlation times from 0.1 to 10 micros). This is indicative of a strong interaction of water with "interfacial" hydrophilic groups of the polymeric matrix (wetting situation). Variations of the relaxation rates with water uptake reveal a two-step hydration process: solvation and formation of disconnected aqueous clusters near polar groups, followed by the formation of a continuous hydrogen bond network. On the contrary, in the Nafion we observed weak variations of R(1)(omega) at low frequencies. This is typical of a nonwetting behavior. At early hydration stages, R(1)(omega) evolves logarithmically, suggesting a confined bidimensional diffusion of protons in the microsecond time range. Such an evolution is lost at higher swelling where a plateau related to three-dimensional diffusion is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA