Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(23): 4924-4941.e10, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739872

RESUMO

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways. Moreover, malignant cells from within the same patients show substantial variation in chromatin accessibility linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gynecologic cancers.


Assuntos
Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Citoplasmático Pequeno/genética , Idoso , Carcinogênese , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Transição Epitelial-Mesenquimal , Feminino , Tumores do Estroma Gastrointestinal/genética , Biblioteca Gênica , Técnicas Genéticas , Genômica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Oncogenes , Ovário/metabolismo , Proteômica , RNA-Seq , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35192692

RESUMO

A major topic of debate in developmental biology centers on whether development is continuous, discontinuous, or a mixture of both. Pseudo-time trajectory models, optimal for visualizing cellular progression, model cell transitions as continuous state manifolds and do not explicitly model real-time, complex, heterogeneous systems and are challenging for benchmarking with temporal models. We present a data-driven framework that addresses these limitations with temporal single-cell data collected at discrete time points as inputs and a mixture of dependent minimum spanning trees (MSTs) as outputs, denoted as dynamic spanning forest mixtures (DSFMix). DSFMix uses decision-tree models to select genes that account for variations in multimodality, skewness and time. The genes are subsequently used to build the forest using tree agglomerative hierarchical clustering and dynamic branch cutting. We first motivate the use of forest-based algorithms compared to single-tree approaches for visualizing and characterizing developmental processes. We next benchmark DSFMix to pseudo-time and temporal approaches in terms of feature selection, time correlation, and network similarity. Finally, we demonstrate how DSFMix can be used to visualize, compare and characterize complex relationships during biological processes such as epithelial-mesenchymal transition, spermatogenesis, stem cell pluripotency, early transcriptional response from hormones and immune response to coronavirus disease. Our results indicate that the expression of genes during normal development exhibits a high proportion of non-uniformly distributed profiles that are mostly right-skewed and multimodal; the latter being a characteristic of major steady states during development. Our study also identifies and validates gene signatures driving complex dynamic processes during somatic or germline differentiation.


Assuntos
Benchmarking , Modelos Teóricos , Análise de Célula Única/métodos , Algoritmos , Animais , Microambiente Celular , Análise de Dados , Árvores de Decisões , Perfilação da Expressão Gênica/métodos , Humanos , Espermatogênese
3.
Metabolomics ; 20(4): 71, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972029

RESUMO

BACKGROUND AND OBJECTIVE: Blood-based small molecule metabolites offer easy accessibility and hold significant potential for insights into health processes, the impact of lifestyle, and genetic variation on disease, enabling precise risk prevention. In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. METHODS: We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. RESULTS: We identified metabolites associated with higher and lower risk of HF incidence, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. These associations were not confounded by the other metabolites due to uncovering the connectivity among metabolites and adjusting each association for the confounding metabolites. Examples of our findings include the direct influence of asparagine on glycine, both of which were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids, which are not synthesized in the human body and are obtained directly from the diet. CONCLUSION: Metabolites may play a critical role in linking genetic background and lifestyle factors to HF incidence. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates studying complex conditions like HF.


Assuntos
Insuficiência Cardíaca , Metabolômica , Insuficiência Cardíaca/metabolismo , Humanos , Metabolômica/métodos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Metaboloma , Idoso , Redes e Vias Metabólicas
4.
Genome Res ; 29(5): 784-797, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30846531

RESUMO

Eukaryotic genome replication depends on thousands of DNA replication origins (ORIs). A major challenge is to learn ORI biology in multicellular organisms in the context of growing organs to understand their developmental plasticity. We have identified a set of ORIs of Arabidopsis thaliana and their chromatin landscape at two stages of post-embryonic development. ORIs associate with multiple chromatin signatures including transcription start sites (TSS) but also proximal and distal regulatory regions and heterochromatin, where ORIs colocalize with retrotransposons. In addition, quantitative analysis of ORI activity led us to conclude that strong ORIs have high GC content and clusters of GGN trinucleotides. Development primarily influences ORI firing strength rather than ORI location. ORIs that preferentially fire at early developmental stages colocalize with GC-rich heterochromatin, but at later stages with transcribed genes, perhaps as a consequence of changes in chromatin features associated with developmental processes. Our study provides the set of ORIs active in an organism at the post-embryo stage that should allow us to study ORI biology in response to development, environment, and mutations with a quantitative approach. In a wider scope, the computational strategies developed here can be transferred to other eukaryotic systems.


Assuntos
Arabidopsis/genética , Replicação do DNA , Heterocromatina/genética , Origem de Replicação/genética , Arabidopsis/crescimento & desenvolvimento , Composição de Bases/genética , Células Cultivadas , Cromatina/metabolismo , Retroelementos/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
5.
BMC Bioinformatics ; 21(1): 469, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087039

RESUMO

BACKGROUND: Common and complex traits are the consequence of the interaction and regulation of multiple genes simultaneously, therefore characterizing the interconnectivity of genes is essential to unravel the underlying biological networks. However, the focus of many studies is on the differential expression of individual genes or on co-expression analysis. METHODS: Going beyond analysis of one gene at a time, we systematically integrated transcriptomics, genotypes and Hi-C data to identify interconnectivities among individual genes as a causal network. We utilized different machine learning techniques to extract information from the network and identify differential regulatory pattern between cases and controls. We used data from the Allen Brain Atlas for replication. RESULTS: Employing the integrative systems approach on the data from CommonMind Consortium showed that gene transcription is controlled by genetic variants proximal to the gene (cis-regulatory factors), and transcribed distal genes (trans-regulatory factors). We identified differential gene regulatory patterns in SCZ-cases versus controls and novel SCZ-associated genes that may play roles in the disorder since some of them are primary expressed in human brain. In addition, we observed genes known associated with SCZ are not likely (OR = 0.59) to have high impacts (degree > 3) on the network. CONCLUSIONS: Causal networks could reveal underlying patterns and the role of genes individually and as a group. Establishing principles that govern relationships between genes provides a mechanistic understanding of the dysregulated gene transcription patterns in SCZ and creates more efficient experimental designs for further studies. This information cannot be obtained by studying a single gene at the time.


Assuntos
Encéfalo/metabolismo , Biologia Computacional , Redes Reguladoras de Genes , Esquizofrenia/genética , Transcriptoma , Humanos
6.
J Med Genet ; 54(5): 313-323, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28039329

RESUMO

BACKGROUND: Increased heart rate and a prolonged QT interval are important risk factors for cardiovascular morbidity and mortality, and can be influenced by the use of various medications, including tricyclic/tetracyclic antidepressants (TCAs). We aim to identify genetic loci that modify the association between TCA use and RR and QT intervals. METHODS AND RESULTS: We conducted race/ethnic-specific genome-wide interaction analyses (with HapMap phase II imputed reference panel imputation) of TCAs and resting RR and QT intervals in cohorts of European (n=45 706; n=1417 TCA users), African (n=10 235; n=296 TCA users) and Hispanic/Latino (n=13 808; n=147 TCA users) ancestry, adjusted for clinical covariates. Among the populations of European ancestry, two genome-wide significant loci were identified for RR interval: rs6737205 in BRE (ß=56.3, pinteraction=3.9e-9) and rs9830388 in UBE2E2 (ß=25.2, pinteraction=1.7e-8). In Hispanic/Latino cohorts, rs2291477 in TGFBR3 significantly modified the association between TCAs and QT intervals (ß=9.3, pinteraction=2.55e-8). In the meta-analyses of the other ethnicities, these loci either were excluded from the meta-analyses (as part of quality control), or their effects did not reach the level of nominal statistical significance (pinteraction>0.05). No new variants were identified in these ethnicities. No additional loci were identified after inverse-variance-weighted meta-analysis of the three ancestries. CONCLUSIONS: Among Europeans, TCA interactions with variants in BRE and UBE2E2 were identified in relation to RR intervals. Among Hispanic/Latinos, variants in TGFBR3 modified the relation between TCAs and QT intervals. Future studies are required to confirm our results.


Assuntos
Envelhecimento/fisiologia , Antidepressivos Tricíclicos/farmacologia , Eletrocardiografia , Estudo de Associação Genômica Ampla , Coração/fisiopatologia , Farmacogenética , Idoso , Feminino , Loci Gênicos , Coração/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade
7.
Plant Cell ; 26(6): 2351-2366, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24934173

RESUMO

Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.

8.
J Biol Chem ; 290(28): 17535-45, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25998124

RESUMO

Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.


Assuntos
Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Animais , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Glicina/química , Células HEK293 , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Contração Muscular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
9.
Commun Biol ; 7(1): 709, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851856

RESUMO

Vaccination reduces morbidity and mortality due to infections, but efficacy may be limited due to distinct immunogenicity at the extremes of age. This raises the possibility of employing adjuvants to enhance immunogenicity and protection. Early IFNγ production is a hallmark of effective vaccine immunogenicity in adults serving as a biomarker that may predict effective adjuvanticity. We utilized mass cytometry (CyTOF) to dissect the source of adjuvant-induced cytokine production in human blood mononuclear cells (BMCs) from newborns (~39-week-gestation), adults (~18-63 years old) and elders (>65 years of age) after stimulation with pattern recognition receptors agonist (PRRa) adjuvants. Dimensionality reduction analysis of CyTOF data mapped the BMC compartment, elucidated age-specific immune responses and profiled PRR-mediated activation of monocytes and DCs upon adjuvant stimulation. Furthermore, we demonstrated PRRa adjuvants mediated innate IFNγ induction and mapped NK cells as the key source of TLR7/8 agonist (TLR7/8a) specific innate IFNγ responses. Hierarchical clustering analysis revealed age and TLR7/8a-specific accumulation of innate IFNγ producing γδ T cells. Our study demonstrates the application of mass cytometry and cutting-edge computational approaches to characterize immune responses across immunologically distinct age groups and may inform identification of the bespoke adjuvantation systems tailored to enhance immunity in distinct vulnerable populations.


Assuntos
Adjuvantes Imunológicos , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Adulto , Pessoa de Meia-Idade , Adjuvantes Imunológicos/farmacologia , Idoso , Adulto Jovem , Adolescente , Interferon gama/metabolismo , Recém-Nascido , Feminino , Masculino , Fatores Etários , Imunidade Inata
10.
Res Sq ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559223

RESUMO

While monoclonal antibody-based targeted therapies have substantially improved progression-free survival in cancer patients, the variability in individual responses poses a significant challenge in patient care. Therefore, identifying cancer subtypes and their associated biomarkers is required for assigning effective treatment. In this study, we integrated genotype and pre-treatment tissue RNA-seq data and identified biomarkers causally associated with the overall survival (OS) of colorectal cancer (CRC) patients treated with either cetuximab or bevacizumab. We performed enrichment analysis for specific consensus molecular subtypes (CMS) of colorectal cancer and evaluated differential expression of identified genes using paired tumor and normal tissue from an external cohort. In addition, we replicated the causal effect of these genes on OS using validation cohort and assessed their association with the Cancer Genome Atlas Program data as an external cohort. One of the replicated findings was WDR62, whose overexpression shortened OS of patients treated with cetuximab. Enrichment of its over expression in CMS1 and low expression in CMS4 suggests that patients with CMS4 subtype may drive greater benefit from cetuximab. In summary, this study highlights the importance of integrating different omics data for identifying promising biomarkers specific to a treatment or a cancer subtype.

11.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948758

RESUMO

Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.

12.
Cancer Res ; 84(21): 3684-3700, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186674

RESUMO

Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA sequencing that enabled unbiased detection of target genes genome-wide. Generation of high-resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in patients with TNBC. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its eRNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared with nonmalignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of TNBC. Significance: Integrative analysis of eRNA-producing super-enhancers defines molecular mechanisms controlling global patterns of gene expression that regulate clinical outcomes in breast cancer, highlighting the potential of enhancers as biomarkers and therapeutic targets.


Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Animais , Feminino , Camundongos , Progressão da Doença , Proliferação de Células/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas
13.
Res Sq ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645766

RESUMO

In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. We identified metabolites associated with higher or lower risk of HF incidence, the associations that were not confounded by the other metabolites, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. We revealed the underlying relationships of the findings. For example, asparagine directly influenced glycine, and both were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids which are not synthesized in the human body and come directly from the diet. Metabolites may play a critical role in linking genetic background and lifestyle factors to HF progression. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates a mechanistic understanding of HF progression.

14.
Res Sq ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168324

RESUMO

Predictive and prognostic gene signatures derived from interconnectivity among genes can tailor clinical care to patients in cancer treatment. We identified gene interconnectivity as the transcriptomic-causal network by integrating germline genotyping and tumor RNA-seq data from 1,165 patients with metastatic colorectal cancer (CRC). The patients were enrolled in a clinical trial with randomized treatment, either cetuximab or bevacizumab in combination with chemotherapy. We linked the network to overall survival (OS) and detected novel biomarkers by controlling for confounding genes. Our data-driven approach discerned sets of genes, each set collectively stratify patients based on OS. Two signatures under the cetuximab treatment were related to wound healing and macrophages. The signature under the bevacizumab treatment was related to cytotoxicity and we replicated its effect on OS using an external cohort. We also showed that the genes influencing OS within the signatures are downregulated in CRC tumor vs. normal tissue using another external cohort. Furthermore, the corresponding proteins encoded by the genes within the signatures interact each other and are functionally related. In conclusion, this study identified a group of genes that collectively stratified patients based on OS and uncovered promising novel prognostic biomarkers for personalized treatment of CRC using transcriptomic causal networks.

15.
Front Genet ; 13: 990486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186433

RESUMO

The number of studies with information at multiple biological levels of granularity, such as genomics, proteomics, and metabolomics, is increasing each year, and a biomedical questaion is how to systematically integrate these data to discover new biological mechanisms that have the potential to elucidate the processes of health and disease. Causal frameworks, such as Mendelian randomization (MR), provide a foundation to begin integrating data for new biological discoveries. Despite the growing number of MR applications in a wide variety of biomedical studies, there are few approaches for the systematic analysis of omic data. The large number and diverse types of molecular components involved in complex diseases interact through complex networks, and classical MR approaches targeting individual components do not consider the underlying relationships. In contrast, causal network models established in the principles of MR offer significant improvements to the classical MR framework for understanding omic data. Integration of these mostly distinct branches of statistics is a recent development, and we here review the current progress. To set the stage for causal network models, we review some recent progress in the classical MR framework. We then explain how to transition from the classical MR framework to causal networks. We discuss the identification of causal networks and evaluate the underlying assumptions. We also introduce some tests for sensitivity analysis and stability assessment of causal networks. We then review practical details to perform real data analysis and identify causal networks and highlight some of the utility of causal networks. The utilities with validated novel findings reveal the full potential of causal networks as a systems approach that will become necessary to integrate large-scale omic data.

16.
Sci Rep ; 9(1): 5845, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971721

RESUMO

Heart failure is a major cause for premature death. Given the heterogeneity of the heart failure syndrome, identifying genetic determinants of cardiac function and structure may provide greater insights into heart failure. Despite progress in understanding the genetic basis of heart failure through genome wide association studies, the heritability of heart failure is not well understood. Gaining further insights into mechanisms that contribute to heart failure requires systematic approaches that go beyond single trait analysis. We integrated a Bayesian multi-trait approach and a Bayesian networks for the analysis of 10 correlated traits of cardiac structure and function measured across 3387 individuals with whole exome sequence data. While using single-trait based approaches did not find any significant genetic variant, applying the integrative Bayesian multi-trait approach, we identified 3 novel variants located in genes, RGS3, CHD3, and MRPL38 with significant impact on the cardiac traits such as left ventricular volume index, parasternal long axis interventricular septum thickness, and mean left ventricular wall thickness. Among these, the rare variant NC_000009.11:g.116346115C > A (rs144636307) in RGS3 showed pleiotropic effect on left ventricular mass index, left ventricular volume index and maximal left atrial anterior-posterior diameter while RGS3 can inhibit TGF-beta signaling associated with left ventricle dilation and systolic dysfunction.


Assuntos
DNA Helicases/genética , Insuficiência Cardíaca/genética , Hipertrofia Ventricular Esquerda/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Mitocondriais/genética , Proteínas RGS/genética , Proteínas Ribossômicas/genética , Disfunção Ventricular Esquerda/genética , Teorema de Bayes , Feminino , Átrios do Coração/patologia , Insuficiência Cardíaca/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação
17.
PLoS One ; 14(6): e0217796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31251759

RESUMO

BACKGROUND: The electrocardiographically quantified QRS duration measures ventricular depolarization and conduction. QRS prolongation has been associated with poor heart failure prognosis and cardiovascular mortality, including sudden death. While previous genome-wide association studies (GWAS) have identified 32 QRS SNPs across 26 loci among European, African, and Asian-descent populations, the genetics of QRS among Hispanics/Latinos has not been previously explored. METHODS: We performed a GWAS of QRS duration among Hispanic/Latino ancestry populations (n = 15,124) from four studies using 1000 Genomes imputed genotype data (adjusted for age, sex, global ancestry, clinical and study-specific covariates). Study-specific results were combined using fixed-effects, inverse variance-weighted meta-analysis. RESULTS: We identified six loci associated with QRS (P<5x10-8), including two novel loci: MYOCD, a nuclear protein expressed in the heart, and SYT1, an integral membrane protein. The top SNP in the MYOCD locus, intronic SNP rs16946539, was found in Hispanics/Latinos with a minor allele frequency (MAF) of 0.04, but is monomorphic in European and African descent populations. The most significant QRS duration association was with intronic SNP rs3922344 (P = 1.19x10-24) in SCN5A/SCN10A. Three other previously identified loci, CDKN1A, VTI1A, and HAND1, also exceeded the GWAS significance threshold among Hispanics/Latinos. A total of 27 of 32 previously identified QRS duration SNPs were shown to generalize in Hispanics/Latinos. CONCLUSIONS: Our QRS duration GWAS, the first in Hispanic/Latino populations, identified two new loci, underscoring the utility of extending large scale genomic studies to currently under-examined populations.


Assuntos
Eletrocardiografia , Loci Gênicos , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Humanos , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
18.
Environ Int ; 132: 104723, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31208937

RESUMO

BACKGROUND: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 µm in diameter (PM2.5; PM10; PM2.5-10). METHODS: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0 × 10-7; PCochran's Q > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study. RESULTS: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33 × 10-8). One-month mean PM10 and PM2.5-10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84 × 10-8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86 × 10-8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA. CONCLUSIONS: Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.


Assuntos
Poluentes Atmosféricos/toxicidade , Metilação de DNA , Material Particulado/toxicidade , Adulto , Idoso , Poluentes Atmosféricos/análise , Estudos de Coortes , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade
19.
Sci Rep ; 8(1): 5675, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618737

RESUMO

The genetic basis of supraventricular and ventricular ectopy (SVE, VE) remains largely uncharacterized, despite established genetic mechanisms of arrhythmogenesis. To identify novel genetic variants associated with SVE/VE in ancestrally diverse human populations, we conducted a genome-wide association study of electrocardiographically identified SVE and VE in five cohorts including approximately 43,000 participants of African, European and Hispanic/Latino ancestry. In thirteen ancestry-stratified subgroups, we tested multivariable-adjusted associations of SVE and VE with single nucleotide polymorphism (SNP) dosage. We combined subgroup-specific association estimates in inverse variance-weighted, fixed-effects and Bayesian meta-analyses. We also combined fixed-effects meta-analytic t-test statistics for SVE and VE in multi-trait SNP association analyses. No loci reached genome-wide significance in trans-ethnic meta-analyses. However, we found genome-wide significant SNPs intronic to an apoptosis-enhancing gene previously associated with QRS interval duration (FAF1; lead SNP rs7545860; effect allele frequency = 0.02; P = 2.0 × 10-8) in multi-trait analysis among European ancestry participants and near a locus encoding calcium-dependent glycoproteins (DSC3; lead SNP rs8086068; effect allele frequency = 0.17) in meta-analysis of SVE (P = 4.0 × 10-8) and multi-trait analysis (P = 2.9 × 10-9) among African ancestry participants. The novel findings suggest several mechanisms by which genetic variation may predispose to ectopy in humans and highlight the potential value of leveraging pleiotropy in future studies of ectopy-related phenotypes.


Assuntos
Complexos Atriais Prematuros/genética , Ensaios Clínicos como Assunto , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Taquicardia Supraventricular/genética , Complexos Ventriculares Prematuros/genética , Idoso , Complexos Atriais Prematuros/patologia , Teorema de Bayes , Estudos de Coortes , Eletrocardiografia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Taquicardia Supraventricular/patologia , Complexos Ventriculares Prematuros/patologia
20.
Heart ; 104(11): 904-911, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29127183

RESUMO

OBJECTIVE: PR interval (PR) is a heritable electrocardiographic measure of atrial and atrioventricular nodal conduction. Changes in PR duration may be associated with atrial fibrillation, heart failure and all-cause mortality. Hispanic/Latino populations have high burdens of cardiovascular morbidity and mortality, are highly admixed and represent exceptional opportunities for novel locus identification. However, they remain chronically understudied. We present the first genome-wide association study (GWAS) of PR in 14 756 participants of Hispanic/Latino ancestry from three studies. METHODS: Study-specific summary results of the association between 1000 Genomes Phase 1 imputed single-nucleotide polymorphisms (SNPs) and PR assumed an additive genetic model and were adjusted for global ancestry, study centre/region and clinical covariates. Results were combined using fixed-effects, inverse variance weighted meta-analysis. Sequential conditional analyses were used to identify independent signals. Replication of novel loci was performed in populations of Asian, African and European descent. ENCODE and RoadMap data were used to annotate results. RESULTS: We identified a novel genome-wide association (P<5×10-8) with PR at ID2 (rs6730558), which replicated in Asian and European populations (P<0.017). Additionally, we generalised 10 previously identified PR loci to Hispanics/Latinos. Bioinformatics annotation provided evidence for regulatory function in cardiac tissue. Further, for six loci that generalised, the Hispanic/Latino index SNP was genome-wide significant and identical to (or in high linkage disequilibrium with) the previously identified GWAS lead SNP. CONCLUSIONS: Our results suggest that genetic determinants of PR are consistent across race/ethnicity, but extending studies to admixed populations can identify novel associations, underscoring the importance of conducting genetic studies in diverse populations.


Assuntos
Nó Atrioventricular/fisiologia , Hispânico ou Latino/genética , Proteína 2 Inibidora de Diferenciação/genética , Polimorfismo de Nucleotídeo Único/genética , Fibrilação Atrial/etnologia , Fibrilação Atrial/genética , Eletrocardiografia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA