Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430823

RESUMO

Ionic liquids are a potent class of organic compounds exhibiting unique physico-chemical properties and structural compositions that are different from the classical dipolar organic liquids. These molecules have found diverse applications in different chemical, biochemical, biophysical fields, and a number of industrial usages. The ionic liquids-based products and procedural applications are being developed for a number of newer industrial purposes, and academic uses in nanotechnology related procedures, processes, and products, especially in nanobiotechnology and nanomedicine. The current article overviews their uses in different fields, including applications, functions, and as parts of products and processes at primary and advanced levels. The application and product examples, and prospects in various fields of nanotechnology, domains of nanosystem syntheses, nano-scale product development, the process of membrane filtering, biofilm formation, and bio-separations are prominently discussed. The applications in carbon nanotubes; quantum dots; and drug, gene, and other payload delivery vehicle developments in the nanobiotechnology field are also covered. The broader scopes of applications of ionic liquids, future developmental possibilities in chemistry and different bio-aspects, promises in the newer genres of nanobiotechnology products, certain bioprocesses controls, and toxicity, together with emerging trends, challenges, and prospects are also elaborated.


Assuntos
Líquidos Iônicos , Nanotubos de Carbono , Líquidos Iônicos/química , Nanotecnologia , Nanomedicina , Compostos Orgânicos
2.
Biomedicines ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35884775

RESUMO

High-dose methotrexate (HDMTX) is one of the chemotherapeutic agents used to treat a variety of cancers in both adults and children. However, the toxicity associated with HDMTX has resulted in the spread of infections and treatment interruption. Further, poor bioavailability due to efflux pump activities mediated by P-glycoprotein has also been linked to poor therapeutic effects of methotrexate following oral administrations. D-α-Tocopheryl poly-ethylene glycol 1000 succinate (TPGS) is known to improve the bioavailability of poorly soluble drugs by inhibiting P-gp efflux activities, thus enhancing cellular uptake. Therefore, to achieve improved bioavailability for MTX, this study aimed to design and develop a novel drug delivery system employing TPGS and a biodegradable polymer, i.e., PLGA, to construct methotrexate-loaded nanoparticles fixated in alginate-gelatine 3D printable hydrogel ink to form a solid 3D printed tablet for oral delivery. The results indicated that high accuracy (>95%) of the 3D printed tablets was achieved using a 25 G needle. In vitro, drug release profiles were investigated at pH 1.2 and pH 7.4 to simulate the gastrointestinal environment. The in vitro release profile displayed a controlled and prolonged release of methotrexate over 24 h. The in silico modeling study displayed P-gp ATPase inhibition, suggesting enhanced MTX absorption from the gastrointestinal site. The 3D-printed hydrogel-based tablet has the potential to overcome the chemotherapeutic challenges that are experienced with conventional therapies.

3.
Chem Phys Lipids ; 249: 105241, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152880

RESUMO

The rampant antimicrobial resistance crisis calls for efficient and targeted drug delivery of antibiotics at the infectious site. Hence, this study aimed to synthesize a pH-responsive dimethylglycine surface-modified branched lipid (DMGSAD-lipid). The structure of the synthesized lipid was fully confirmed. The lipid polymer hybrid nanoparticles (LPHNPs) were formulated using the solvent evaporation method and characterised. Two LPHNPs (VCM_HS15_LPHNPs and VCM_RH40_LPHNPs) were formulated and characterised for size, polydispersity index (PDI), and zeta potential (ZP). Atomistic molecular dynamics simulations revealed that both the systems self-assembled to form energetically stable aggregates. The ZP of RH40_VCM_LPHNPs changed from 0.55 ± 0.14-9.44 ± 0.33 Vm, whereas for SH15_VCM_LPHNPs, ZP changed from - 1.55 ± 0.184 Vm to 9.83 ± 0.52 Vm at pH 7.4 and 6.0, respectively. The encapsulation efficiencies of VCM were above 40% while the drug release was faster at acidic pH when compared to pH 7.4. The antibacterial activity of LPHNPs against MRSA was eight-fold better in MICs at pH 6.0, compared to 7.4, when compared to bare VCM-treated specimens. The study confirms that pH-responsive LPHNPs have the potential for enhancing the treatment of bacterial infections and other diseases characterised by acidic conditions at the target site.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Vancomicina/química , Nanopartículas/química , Polímeros , Lipídeos/química , Concentração de Íons de Hidrogênio
4.
Pharmaceutics ; 14(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36559335

RESUMO

As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32808486

RESUMO

Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Antibacterianos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
J Pharm Sci ; 109(8): 2594-2606, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32473209

RESUMO

The aim of this study was to synthesize a novel biocompatible pH-responsive oleic acid-based dendritic lipid amphiphile (OLA-SPDA) which self-assembled into stable micelles (OLA-SPDA -micelles) with a relatively low critical micelle concentration (CMC) of 5.6 × 10-6 M. The formulated micelles had particle size, polydispersity index (PDI) and zeta potential (ZP) of 84.16 ± 0.184 nm, 0.199 ± 0.011 and -42.6 ± 1.98 mV, respectively, at pH 7.4. The vancomycin (VCM) encapsulation efficiency was 78.80 ± 3.26%. The micelles demonstrated pH-responsiveness with an increase in particle size to 141.1 ± 0.0707 nm and a much faster release profile at pH 6.0, as compared to pH 7.4. The minimum inhibitory concentration (MIC) of VCM-OLA-SPDA-micelle against methicillin-resistant staphylococcus aureus (MRSA) was 8-fold lower compared to bare VCM, and the formulation had a 4-fold lower MIC at pH 6.0 when compared to the formulation's MIC at pH 7.4. MRSA viability assay showed the micelles had a percentage killing of 93.39% when compared bare-VCM (58.21%) at the same MIC (0.98 µg/mL). In vivo mice (BALB/c) skin infection models showed an 8-fold reduction in MRSA burden after treatment with VCM-OLA-SPDA-micelles when compared with bare VCM. The above results suggest that pH-responsive VCM-OLA-SPDA-micelles has the potential to be an effective carrier to enhance therapeutic outcomes against infections characterised by low pH.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Ácido Oleico , Propionatos , Cauda
7.
Colloids Surf B Biointerfaces ; 182: 110388, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369955

RESUMO

MRSA infections are a major global healthcare problem associated with high morbidity and mortality. The application of novel materials in antibiotic delivery has efficiently contributed to the treatment of MRSA infections. The aim of the study was to develop novel hyaluronic acid-oleylamine (HA-OLA) conjugates with 25-50% degrees of conjugation, for application as a nano-drug carrier with inherent antibacterial activity. The biosafety of synthesized novel HA-OLA conjugates was confirmed by in vitro cytotoxicity assay. Drug carrying ability of HA-OLA conjugates was confirmed by 26.1-43.12% of vancomycin (VCM) encapsulation in self-assembled polymersomes. These polymersomes were dispersed in nano-sized range (196.1-360.9 nm) with a negative zeta potential. Vancomycin loaded polymersomes were found to have spherical and bilayered morphology. The VCM loaded polymersomes displayed sustained drug release for 72 h. In vitro studies showed moderate antibacterial activity for HA-OLA conjugates against both S. aureus and MRSA with minimum inhibitory concentration (MIC) of 500 µg/mL. The VCM loaded HA-OLA polymersomes displayed four-fold lower MIC (1.9 µg/mL) than free VCM (7.8 µg/mL) against MRSA. Furthermore, synergism was observed for VCM and HA-OLA against MRSA. Flow cytometry showed 1.8-fold higher MRSA cell death in the population for VCM loaded polymersomes relative to free drug, at concentration of 1.95 µg/mL. Bacterial cell morphology showed that the drug loaded polymersomes had stronger impact on MRSA membrane, compared to free VCM. These findings suggest that, HA-OLA conjugates are promising nano-carriers to function as antibiotic delivery vehicles for the treatment of bacterial/MRSA infections.


Assuntos
Aminas/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Polímeros/química , Vancomicina/administração & dosagem , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Meticilina/farmacologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Vancomicina/química , Vancomicina/farmacocinética
8.
J Drug Target ; 27(10): 1094-1107, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30901236

RESUMO

The development of bacterial resistance against antibiotics is attributed to poor localisation of lethal antibiotic dose at the infection site. This study reports on the synthesis and use of novel two-chain fatty acid-based lipids (FAL) containing amino acid head groups in the formulation of pH-responsive liposomes for the targeted delivery of vancomycin (VAN). The formulated liposomes were characterised for their size, polydispersity index (PDI), surface charge and morphology. The drug-loading capacity, drug release, cell viability, and in vitro and in vivo efficacy of the formulations were investigated. A sustained VAN release profile was observed and in vitro antibacterial studies against S. aureus and MRSA showed superior and prolonged activity over 72 h at both pH 7.4 and 6.0. Enhanced antibacterial activity at pH 6.0 was observed for the DOAPA-VAN-Lipo and DLAPA-VAN-Lipo formulations. Flow cytometry studies indicated a high killing rate of MRSA cells using DOAPA-VN-Lipo (71.98%) and DLAPA-VN-Lipo (73.32%). In vivo studies showed reduced MRSA recovered from mice treated with formulations by four- and two-folds lower than bare VN treated mice, respectively. The targeted delivery of VAN can be improved by novel pH-responsive liposomes from the two-chain (FAL) designed in this study.


Assuntos
Ácidos Graxos/química , Lipídeos/química , Lipossomos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/química , Vancomicina/farmacologia , Células A549 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA