Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2301045120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607229

RESUMO

Subverting the host immune system is a major task for any given pathogen to assure its survival and proliferation. For the opportunistic human pathogen Bacillus cereus (Bc), immune evasion enables the establishment of potent infections. In various species of the Bc group, the pleiotropic regulator PlcR and its cognate cell-cell signaling peptide PapR7 regulate virulence gene expression in response to fluctuations in population density, i.e., a quorum-sensing (QS) system. However, how QS exerts its effects during infections and whether PlcR confers the immune evading ability remain unclear. Herein, we report how interception of the QS communication in Bc obliterates the ability to affect the host immune system. Here, we designed a peptide-based QS inhibitor that suppresses PlcR-dependent virulence factor expression and attenuates Bc infectivity in mouse models. We demonstrate that the QS peptidic inhibitor blocks host immune system-mediated eradication by reducing the expression of PlcR-regulated major toxins similarly to the profile that was observed for isogenic strains. Our findings provide evidence that Bc infectivity is regulated by QS circuit-mediated destruction of host immunity, thus reveal a interesting strategy to limit Bc virulence and enhance host defense. This peptidic quorum-quenching agent constitutes a readily accessible chemical tool for studying how other pathogen QS systems modulate host immunity and forms a basis for development of anti-infective therapeutics.


Assuntos
Bacillus , Percepção de Quorum , Humanos , Animais , Camundongos , Comunicação Celular , Bacillus cereus , Sistema Imunitário , Peptídeos/farmacologia
2.
Antimicrob Agents Chemother ; 67(11): e0057423, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819119

RESUMO

Indiscriminate use of antibiotics has imposed a selective pressure for the rapid rise in bacterial resistance, creating an urgent need for novel therapeutics for managing bacterial infectious diseases while counteracting bacterial resistance. Carbapenem-resistant Klebsiella pneumoniae strains have become a major challenge in modern medicine due to their ability to cause an array of severe infections. Recently, we have shown that the 20-mer random peptide mixtures are effective therapeutics against three ESKAPEE pathogens. Here, we evaluated the toxicity, biodistribution, bioavailability, and efficacy of the ultra-short palmitoylated 5-mer phenylalanine:lysine (FK5P) random peptide mixtures against multiple clinical isolates of carbapenem-resistant K. pneumoniae and K. oxytoca. We demonstrate the FK5P rapidly and effectively killed various strains of K. pneumoniae, inhibited the formation of biofilms, and disrupted mature biofilms. FK5P displayed strong toxicity profiles both in vitro and in mice, with prolonged favorable biodistribution and a long half-life. Significantly, FK5P reduced the bacterial burden in mouse models of acute pneumonia and bacteremia and increased the survival rate in a mouse model of bacteremia. Our results demonstrate that FK5P is a safe and promising therapy against Klebsiella species as well as other ESKAPEE pathogens.


Assuntos
Bacteriemia , Infecções por Klebsiella , Camundongos , Animais , Klebsiella pneumoniae , Distribuição Tecidual , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Bacteriemia/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36806908

RESUMO

We have previously shown that l-glucose, the non-caloric enantiomer of d-glucose, activates the human sweet taste receptor T1R2/T1R3 transiently expressed in HEK293T cells. Here, we show that d- and l-glucose can also activate T1R2 and T1R3 expressed without the counterpart monomer. Serine mutation to alanine in residue 147 in the binding site of T1R3 VFT domain, completely abolishes T1R3S147A activation by either l- or d-glucose, while T1R2/T1R3S147A responds in the same way as T1R2 expressed without its counterpart. We further show that the original T1R2 reference sequence (NM_152232.1) is less sensitive by almost an order of magnitude than the reference sequence at the time this study was performed (NM_152232.4). We find that out of the four differing positions, it is the R317G in the VFT domain of T1R2, that is responsible for this effect in vitro. It is significant for both practical assay sensitivity and because glycine is found in this position in ~20% of the world population. While the effects of the mutations and the partial transfections were similar for d and l enantiomers, their dose-response curves remained distinct, with l-glucose reaching an early plateau.


Assuntos
Glucose , Paladar , Humanos , Glucose/farmacologia , Glucose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Sítios de Ligação
4.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589415

RESUMO

Deuterium oxide (D2O) is water in which the heavier and rare isotope deuterium replaces both hydrogens. We have previously shown that D2O has a distinctly sweet taste, mediated by the T1R2/T1R3 sweet taste receptor. Here, we explore the effect of heavy water on T1R2 and T1R3 subunits. We show that D2O activates T1R3-transfected HEK293T cells similarly to T1R2/T1R3-transfected cells. The response to glucose dissolved in D2O is higher than in water. Mutations of phenylalanine at position 7305.40 in the transmembrane domain of T1R3 to alanine, leucine, or tyrosine impair or diminish activation by D2O, suggesting a critical role for T1R3 TMD domain in relaying the heavy water signal.


Assuntos
Papilas Gustativas , Paladar , Humanos , Óxido de Deutério , Células HEK293 , Glucose/farmacologia
5.
Biochim Biophys Acta ; 1850(7): 1375-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25857770

RESUMO

BACKGROUND: Amphipathic sweet and bitter tastants inhibit purified forms of the protein kinases GRK2, GRK5 and PKA activities. Here we tested whether membrane-permeable tastants may intracellularly interfere with GPCR desensitization at the whole cell context. METHODS: ß2AR-transfected cells and cells containing endogenous ß2AR were preincubated with membrane-permeable or impermeable tastants and then stimulated with isoproterenol (ISO). cAMP formation, ß2AR phosphorylation and ß2AR internalization were monitored in response to ISO stimulation. IBMX and H89 inhibitors and GRK2 silencing were used to explore possible roles of PDE, PKA, and GRK2 in the tastants-mediated amplification of cAMP formation and the tastant delay of ß2AR phosphorylation and internalization. RESULTS: Membrane-permeable but not impermeable tastants amplified the ISO-stimulated cAMP formation in a concentration- and time-dependent manner. Without ISO stimulation, amphipathic tastants, except caffeine, had no effect on cAMP formation. The amplification of ISO-stimulated cAMP formation by the amphipathic tastants was not affected by PDE and PKA activities, but was completely abolished by GRK2 silencing. Amphipathic tastants delayed the ISO-induced GRK-mediated phosphorylation of ß2ARs and GRK2 silencing abolished it. Further, tastants also delayed the ISO-stimulated ß2AR internalization. CONCLUSION: Amphipathic tastants significantly amplify ß2AR signaling and delay its desensitization via their intracellular inhibition of GRK2. GENERAL SIGNIFICANCE: Commonly used amphipathic tastants may potentially affect similar GPCR pathways whose desensitization depends on GRK2's kinase activity. Because GRK2 also modulates phosphorylation of non-receptor components in multiple cellular pathways, these gut-absorbable tastants may permeate into various cells, and potentially affect GRK2-dependent phosphorylation processes in these cells as well.


Assuntos
AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Espaço Intracelular/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Western Blotting , Cafeína/farmacologia , Permeabilidade da Membrana Celular , Inibidores Enzimáticos/farmacologia , Flavanonas/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 2 de Receptor Acoplado a Proteína G/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Espaço Intracelular/efeitos dos fármacos , Isoproterenol/farmacologia , Isoquinolinas/farmacologia , Fosforilação/efeitos dos fármacos , Interferência de RNA , Receptores Adrenérgicos beta 2/genética , Sacarina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sulfonamidas/farmacologia , Paladar/efeitos dos fármacos , Triptofano/farmacologia
6.
Food Chem ; 373(Pt A): 131393, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34715629

RESUMO

Naturally occurring sugars usually have d-chirality. While a change in chirality typically affects ligand-receptor interaction, non-caloric l-glucose was reported as sweet for humans. Here we show that l- and d-glucose have similar sensory detection thresholds (0.041 ± 0.006 M for d-glucose, and 0.032 ± 0.007 M for l-glucose) and similar sweetness intensities at suprathreshold concentrations. We demonstrate that l-glucose acts via the sweet taste receptor TAS1R2/TAS1R3, eliciting a dose-dependent activation in cell-based functional assays. Computational docking of glucose to the VFT domain of TAS1R2 suggests two sub-pockets, each compatible with each of the enantiomers. While some polar residues (Y103, D142, N143, S144, Y215) are unique for sub-pocket A and others (D307, T326, E382, R383) for sub-pocket B, no interaction is unique for only one enantiomer. The many options for creating hydrogen bonds with the hydroxyl moieties of glucose explain how both enantiomers can fit each one of the sub-pockets.


Assuntos
Glucose , Paladar , Humanos , Ligação de Hidrogênio , Receptores Acoplados a Proteínas G/genética , Açúcares
7.
Nanoscale ; 14(26): 9286-9296, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35649277

RESUMO

The alarming and prevailing antibiotic resistance crisis urgently calls for innovative "outside of the box" antibacterial agents, which can differ substantially from conventional antibiotics. In this context, we have established antibacterial candidates based on dynamic supramolecular dendrimer nanosystems self-assembled with amphiphilic dendrimers composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing distinct terminal functionalities. Remarkably, the amphiphilic dendrimer with amine terminals exhibited strong antibacterial activity against both Gram-positive and Gram-negative as well as drug-resistant bacteria, and prevented biofilm formation. Multidisciplinary studies combining experimental approaches and computer modelling together demonstrate that the dendrimer interacts and binds via electrostatic interactions with the bacterial membrane, where it becomes enriched and then dynamically self-assembles into supramolecular nanoassemblies for stronger and multivalent interactions. These, in turn, rapidly promote the insertion of the hydrophobic dendrimer tail into the bacterial membrane thereby inducing bacterial cell lysis and constituting powerful antibacterial activity. Our study presents a novel concept for creating nanotechnology-based antibacterial candidates via dynamic self-assembly and offers a new perspective for combatting recalcitrant bacterial infection.


Assuntos
Dendrímeros , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Biofilmes , Dendrímeros/química , Dendrímeros/farmacologia , Testes de Sensibilidade Microbiana
8.
Antibiotics (Basel) ; 11(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326876

RESUMO

Antibiotic resistance is one of the greatest crises in human medicine. Increased incidents of antibiotic resistance are linked to clinical overuse and overreliance on antibiotics. Among the ESKAPE pathogens, Acinetobacter baumannii, especially carbapenem-resistant isolates, has emerged as a significant threat in the context of blood, urinary tract, lung, and wound infections. Therefore, new approaches that limit the emergence of antibiotic resistant A. baumannii are urgently needed. Recently, we have shown that random peptide mixtures (RPMs) are an attractive alternative class of drugs to antibiotics with strong safety and pharmacokinetic profiles. RPMs are antimicrobial peptide mixtures produced by incorporating two amino acids at each coupling step, rendering them extremely diverse but still defined in their overall composition, chain length, and stereochemistry. The extreme diversity of RPMs may prevent bacteria from evolving resistance rapidly. Here, we demonstrated that RPMs rapidly and efficiently kill different strains of A. baumannii, inhibit biofilm formation, and disrupt mature biofilms. Importantly, RPMs attenuated bacterial burden in mouse models of acute pneumonia and soft tissue infection and significantly reduced mouse mortality during sepsis. Collectively, our results demonstrate RPMs have the potential to be used as powerful therapeutics against antibiotic-resistant A. baumannii.

9.
ACS Infect Dis ; 7(3): 672-680, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33650856

RESUMO

Antibiotic resistance is a daunting challenge in modern medicine, and novel approaches that minimize the emergence of resistant pathogens are desperately needed. Antimicrobial peptides are newer therapeutics that attempt to do this; however, they fall short because of low to moderate antimicrobial activity, low protease stability, susceptibility to resistance development, and high cost of production. The recently developed random peptide mixtures (RPMs) are promising alternatives. RPMs are synthesized by incorporating a defined proportion of two amino acids at each coupling step rather than just one, making them highly variable but still defined in their overall composition, chain length, and stereochemistry. Because RPMs have extreme diversity, it is unlikely that bacteria would be capable of rapidly evolving resistance. However, their efficacy against pathogens in animal models of human infectious diseases remained uncharacterized. Here, we demonstrated that RPMs have strong safety and pharmacokinetic profiles. RPMs rapidly killed both Pseudomonas aeruginosa and Staphylococcus aureus efficiently and disrupted preformed biofilms by both pathogens. Importantly, RPMs were efficacious against both pathogens in mouse models of bacteremia and acute pneumonia. Our results demonstrate that RPMs are potent broad-spectrum therapeutics against antibiotic-resistant pathogens.


Assuntos
Anti-Infecciosos , Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Pneumonia , Animais , Bacteriemia/tratamento farmacológico , Camundongos , Peptídeos , Pseudomonas aeruginosa
10.
Commun Biol ; 4(1): 440, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824405

RESUMO

Hydrogen to deuterium isotopic substitution has only a minor effect on physical and chemical properties of water and, as such, is not supposed to influence its neutral taste. Here we conclusively demonstrate that humans are, nevertheless, able to distinguish D2O from H2O by taste. Indeed, highly purified heavy water has a distinctly sweeter taste than same-purity normal water and can add to perceived sweetness of sweeteners. In contrast, mice do not prefer D2O over H2O, indicating that they are not likely to perceive heavy water as sweet. HEK 293T cells transfected with the TAS1R2/TAS1R3 heterodimer and chimeric G-proteins are activated by D2O but not by H2O. Lactisole, which is a known sweetness inhibitor acting via the TAS1R3 monomer of the TAS1R2/TAS1R3, suppresses the sweetness of D2O in human sensory tests, as well as the calcium release elicited by D2O in sweet taste receptor-expressing cells. The present multifaceted experimental study, complemented by homology modelling and molecular dynamics simulations, resolves a long-standing controversy about the taste of heavy water, shows that its sweet taste is mediated by the human TAS1R2/TAS1R3 taste receptor, and opens way to future studies of the detailed mechanism of action.


Assuntos
Óxido de Deutério/análise , Camundongos Endogâmicos C57BL/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Percepção Gustatória , Paladar , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Simulação de Dinâmica Molecular , Transfecção , Adulto Jovem
11.
Chem Commun (Camb) ; 56(80): 12053-12056, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902531

RESUMO

Random peptide mixtures (RPMs) have been recently proposed as powerful antimicrobial compounds. These are unique mixtures of peptides synthesized by random combination of a cationic and a hydrophobic amino acid. Here, we introduce a new type of antimicrobial compounds, short lipo-RPMs, which result from N-palmitoylation of RPMs. We report the characterization of 5-mer lipo-RPMs containing l-phenylalanine and d-lysine, named p-FdK5. p-FdK5 had high antibacterial activity against several bacterial strains and was able to reduce disease severity caused by a plant pathogen. We further synthesized and studied all 32 (25) possible lipopeptides that compose the p-FdK5 mixture. We showed that the antibacterial activity of specific lipopeptides depends on the peptide hydrophobicity and on the location of the hydrophobic amino acids relative to the palmitic acid. Interestingly, synergism assays revealed positive interactions between different sequence-specific lipopeptides in terms of antimicrobial activity.


Assuntos
Antibacterianos/química , Lipopeptídeos/química , Solanum lycopersicum/efeitos dos fármacos , Xanthomonas/efeitos dos fármacos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Sinergismo Farmacológico , Interações Hidrofóbicas e Hidrofílicas , Lipopeptídeos/farmacologia , Lisina/química , Testes de Sensibilidade Microbiana , Ácidos Palmíticos/química , Fenilalanina/química , Especificidade por Substrato
12.
Front Microbiol ; 10: 1246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231335

RESUMO

The quorum sensing (QS) system of Bacillus cereus, an opportunistic human pathogen, utilizes the autoinducing PapR peptide signal that mediates the activation of the pleiotropic virulence regulator PlcR. A set of synthetic 7-mer PapR-derived peptides (PapR7; ADLPFEF) have been shown to inhibit efficiently the PlcR regulon activity and the production of virulence factors, reflected by a loss in hemolytic activity without affecting bacterial growth. Interestingly, these first potent synthetic inhibitors involved D-amino acid or alanine replacements of three amino acids; proline, glutamic acid, and phenylalanine of the heptapeptide PapR. To better understand the role of these three positions in PlcR activity, we report herein the second generation design, synthesis, and characterization of PapR7-derived combinations, alternate double and triple alanine and D-amino acids replacement at these positions. Our findings generate a new set of non-native PapR7-derived peptides that inhibit the PlcR regulon activity and the production of virulence factors. Using the amino acids substitution strategy, we revealed the role of proline and glutamic acid on PlcR regulon activation. Moreover, we demonstrated that the D-Glutamic acid substitution was crucial for the design of stronger PlcR antagonists. These peptides represent potent synthetic inhibitors of B. cereus QS and constitute new and readily accessible chemical tools for the study of the PlcR system. Our method might be applied to other quorum sensing systems to design new anti-virulence agents.

13.
Talanta ; 199: 131-139, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952236

RESUMO

Detection and identification of bitter compounds draw great attention in pharmaceutical and food industry. Several well-known agonists of specific bitter taste receptors have been found to exhibit anti-cancer effects. For example, N-C=S-containing compounds, such as allyl-isothiocyanates, have shown cancer chemo-preventive effects. It is worth noting that human T2R38 receptor is specific for compounds containing N-C=S moiety. Here, a bioinspired cell-based bioelctronic tongue (BioET) is developed for the high-specificity isothiocyanate-induced bitter detection, utilizing human Caco-2 cells as a primary sensing element and interdigitated impedance sensor as a secondary transducer. As an intestinal carcinoma cell line, Caco-2 endogenously expresses human bitter receptor T2R38, and the activation of T2R38 induces the changes of cellular morphology which can be detected by electric cell-substrate impedance sensing (ECIS). After configuration and optimization of parameters including timing of compound administration and cell density, quantitative bitter evaluation models were built for two well-known bitter compounds, phenylthiocarbamide (PTC) and propylthiouracil (PROP). The bitter specific detection of this BioET is inhibited by probenecid and U-73122, and is not elicited by other taste modalities or bitter ligands that do not activate T2R38. Moreover, by combining different computational tools, we designed a ligand-based virtual screening (LBVS) protocol to select ligands that are likely to activate T2R38 receptor. Three computationally predicted agonists of T2R38 were selected using the LBVS protocol, and the BioET presented response to the predicted agonists, validating the capability of the LBVS protocol. This study suggests this unique cell-based BioET paves a general and promising way to specifically detect N-C=S-containing compounds that can be used for pharmaceutical study and drug development.


Assuntos
Nariz Eletrônico , Isotiocianatos/análise , Receptores Acoplados a Proteínas G/metabolismo , Células CACO-2 , Relação Dose-Resposta a Droga , Humanos , Isotiocianatos/farmacologia , Ligantes , Estrutura Molecular , Feniltioureia/química , Feniltioureia/farmacologia , Propiltiouracila/química , Propiltiouracila/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA