Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(7): 1967-1973, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806718

RESUMO

Since 2006, the responsible regulatory bodies have proposed five health-based guidance values (HBGV) for bisphenol A (BPA) that differ by a factor of 250,000. This range of HBGVs covers a considerable part of the range from highly toxic to relatively non-toxic substances. As such heterogeneity of regulatory opinions is a challenge not only for scientific risk assessment but also for all stakeholders, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) analyzed the reasons for the current discrepancy and used this example to suggest improvements for the process of HBGV recommendations. A key aspect for deriving a HBGV is the selection of appropriate studies that allow the identification of a point of departure (PoD) for risk assessment. In the case of BPA, the HBGV derived in the 2023 EFSA assessment was based on a study that reported an increase of Th17 cells in mice with a benchmark dose lower bound (BMDL40) of 0.53 µg/kg bw/day. However, this study does not comply with several criteria that are important for scientific risk assessment: (1) the selected end-point, Th17 cell frequency in the spleen of mice, is insufficiently understood with respect to health outcomes. (2) It is unclear, by which mechanism BPA may cause an increase in Th17 cell frequency. (3) It is unknown, if an increase of Th17 cell frequency in rodents is comparably observed in humans. (4) Toxicokinetics were not addressed. (5) Neither the raw data nor the experimental protocols are available. A further particularly important criterion (6) is independent data confirmation which is not available in the present case. Previous studies using other readouts did not observe immune-related adverse effects such as inflammation, even at doses orders of magnitude higher than in the Th17 cell-based study. The SKLM not only provides here key criteria for the use of such studies, but also suggests that the use of such a "checklist" requires a careful and comprehensive scientific judgement of each item. It is concluded that the Th17 cell-based study data do not represent an adequate basis for risk assessment of BPA.


Assuntos
Compostos Benzidrílicos , Fenóis , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Medição de Risco/métodos , Animais , Humanos , Camundongos , Relação Dose-Resposta a Droga , Guias como Assunto
2.
Arch Toxicol ; 98(6): 1573-1580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573336

RESUMO

Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.


Assuntos
Adutos de DNA , Exposição Dietética , Dimetilnitrosamina , Nitrosaminas , Humanos , Medição de Risco , Nitrosaminas/toxicidade , Nitrosaminas/farmacocinética , Exposição Dietética/efeitos adversos , Dimetilnitrosamina/toxicidade , Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Nitritos/toxicidade , Nitratos/toxicidade , Nitratos/farmacocinética , Espécies Reativas de Nitrogênio/metabolismo
3.
Arch Toxicol ; 97(11): 3005-3017, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615677

RESUMO

Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Dibenzodioxinas Policloradas , Humanos , Alimentos , Saúde Pública , Medição de Risco
4.
Arch Toxicol ; 96(5): 1423-1435, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247070

RESUMO

Recent analyses conducted by German official food control reported detection of the aromatic amides N-(2,4-dimethylphenyl)acetamide (NDPA), N-acetoacetyl-m-xylidine (NAAX) and 3-hydroxy-2-naphthanilide (Naphthol AS) in cold water extracts from certain food contact materials made from paper or cardboard, including paper straws, paper napkins, and cupcake liners. Because aromatic amides may be cleaved to potentially genotoxic primary amines upon oral intake, these findings raise concern that transfer of NDPA, NAAX and Naphthol AS from food contact materials into food may present a risk to human health. The aim of the present work was to assess the stability of NDPA, NAAX and Naphthol AS and potential cleavage to 2,4-dimethylaniline (2,4-DMA) and aniline during simulated passage through the gastrointestinal tract using static in vitro digestion models. Using the digestion model established by the National Institute for Public Health and the Environment (RIVM, Bilthoven, NL) and a protocol recommended by the European Food Safety Authority, potential hydrolysis of the aromatic amides to the respective aromatic amines was assessed by LC-MS/MS following incubation of the aromatic amides with digestive fluid simulants. Time-dependent hydrolysis of NDPA and NAAX resulting in formation of the primary aromatic amine 2,4-DMA was consistently observed in both models. The highest rate of cleavage of NDPA and NAAX was recorded following 4 h incubation with 0.07 M HCl as gastric-juice simulant, and amounted to 0.21% and 0.053%, respectively. Incubation of Naphthol AS with digestive fluid simulants did not give rise to an increase in the concentration of aniline above the background that resulted from the presence of aniline as an impurity of the test compound. Considering the lack of evidence for aniline formation from Naphthol AS and the extremely low rate of hydrolysis of the amide bonds of NDPA and NAAX during simulated passage through the gastrointestinal tract that gives rise to only very minor amounts of the potentially mutagenic and/or carcinogenic aromatic amine 2,4-DMA, risk assessment based on assumption of 100% cleavage to the primary aromatic amines would appear to overestimate health risks related to the presence of aromatic amides in food contact materials.


Assuntos
Amidas , Espectrometria de Massas em Tandem , Amidas/análise , Aminas/química , Cromatografia Líquida/métodos , Trato Gastrointestinal , Humanos
5.
Arch Toxicol ; 96(8): 2341-2360, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579693

RESUMO

Remdesivir is a prodrug of a nucleoside analog and the first antiviral therapeutic approved for coronavirus disease. Recent cardiac safety concerns and reports on remdesivir-related acute kidney injury call for a better characterization of remdesivir toxicity and understanding of the underlying mechanisms. Here, we performed an in vitro toxicity assessment of remdesivir around clinically relevant concentrations (Cmax 9 µM) using H9c2 rat cardiomyoblasts, neonatal mouse cardiomyocytes (NMCM), rat NRK-52E and human RPTEC/TERT1 cells as cell models for the assessment of cardiotoxicity or nephrotoxicity, respectively. Due to the known potential of nucleoside analogs for the induction of mitochondrial toxicity, we assessed mitochondrial function in response to remdesivir treatment, early proteomic changes in NMCM and RPTEC/TERT1 cells and the contractile function of NMCM. Short-term treatments (24 h) of H9c2 and NRK-52E cells with remdesivir adversely affected cell viability by inhibition of proliferation as determined by significantly decreased 3H-thymidine uptake. Mitochondrial toxicity of remdesivir (1.6-3.1 µM) in cardiac cells was evident by a significant decrease in oxygen consumption, a collapse of mitochondrial membrane potential and an increase in lactate secretion after a 24-48-h treatment. This was supported by early proteomic changes of respiratory chain proteins and intermediate filaments that are typically involved in mitochondrial reorganization. Functionally, an impedance-based analysis showed that remdesivir (6.25 µM) affected the beat rate and contractility of NMCM. In conclusion, we identified adverse effects of remdesivir in cardiac and kidney cells at clinically relevant concentrations, suggesting a careful evaluation of therapeutic use in patients at risk for cardiovascular or kidney disease.


Assuntos
Antivirais , Proteômica , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Animais , Antivirais/toxicidade , Proliferação de Células , Humanos , Rim , Camundongos , Ratos
6.
Arch Toxicol ; 96(6): 1905-1914, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504979

RESUMO

Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity. Salivary excretion may also occur with certain drug molecules and food constituents and their metabolites. Therefore, putative combination effects in the oral cavity and the upper digestive tract may occur, but this has remained largely unexplored up to now. In this Guest Editorial, published evidence on exposure levels and biokinetics of nitrate/nitrite/NOx, NOC and acetaldehyde in the organism is reviewed and knowledge gaps concerning combination effects are identified. Research is suggested to be initiated to study the related unresolved issues.


Assuntos
Nitritos , Trato Gastrointestinal Superior , Acetaldeído/metabolismo , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Compostos Nitrosos/metabolismo , Saliva/metabolismo , Trato Gastrointestinal Superior/metabolismo
7.
Arch Toxicol ; 95(9): 3133-3136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363510

RESUMO

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.


Assuntos
Saúde Pública/legislação & jurisprudência , Medição de Risco/legislação & jurisprudência , União Europeia , Substâncias Perigosas/toxicidade , Política de Saúde/legislação & jurisprudência , Humanos
8.
Arch Toxicol ; 95(7): 2571-2587, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34095968

RESUMO

Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.


Assuntos
Água Potável , Fluoretos , Animais , Estudos Epidemiológicos , Europa (Continente) , Fluoretos/toxicidade , Estudos Longitudinais
9.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948215

RESUMO

Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.


Assuntos
Alternativas aos Testes com Animais/métodos , Embrião não Mamífero/metabolismo , Larva/metabolismo , Testes de Toxicidade/métodos , Peixe-Zebra/metabolismo , Animais , Humanos , Modelos Animais
10.
Arch Toxicol ; 94(5): 1375-1415, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32382957

RESUMO

Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Fluoretos/toxicidade , Síndromes Neurotóxicas/epidemiologia , Experimentação Animal , Animais , Arsênio , Criança , Água Potável , Estudos Epidemiológicos , Europa (Continente) , Feminino , Humanos , Compostos de Metilmercúrio , Nível de Efeito Adverso não Observado
12.
Arch Toxicol ; 92(2): 995-1014, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29098329

RESUMO

Ochratoxin A (OTA) is a potent renal carcinogen but its mechanism has not been fully resolved. In vitro and in vivo gene expression studies consistently revealed down-regulation of gene expression as the predominant transcriptional response to OTA. Based on the importance of specific histone acetylation marks in regulating gene transcription and our recent finding that OTA inhibits histone acetyltransferases (HATs), leading to loss of acetylation of histones and non-histone proteins, we hypothesized that OTA-mediated repression of gene expression may be causally linked to HAT inhibition and loss of histone acetylation. In this study, we used a novel mass spectrometry approach employing chemical 13C-acetylation of unmodified lysine residues for quantification of post-translational acetylation sites to identify site-specific alterations in histone acetylation in human kidney epithelial cells (HK-2) exposed to OTA. These results showed OTA-mediated hypoacetylation at almost all lysine residues of core histones, including loss of acetylation at H3K9 and H3K14, which are hallmarks of gene activation. ChIP-qPCR used to establish a possible link between H3K9 or H3K14 hypoacetylation and OTA-mediated down-regulation of selected genes (AMIGO2, CLASP2, CTNND1) confirmed OTA-mediated H3K9 hypoacetylation at promoter regions of these genes. Integrated analysis of OTA-mediated genome-wide changes in H3K9 acetylation identified by ChIP-Seq with published gene expression data further demonstrated that among OTA-responsive genes almost 80% of hypoacetylated genes were down-regulated, thus confirming an association between H3K9 acetylation status and gene expression of these genes. However, only 7% of OTA repressed genes showed loss of H3K9 acetylation within promoter regions. Interestingly, however, GO analysis and functional enrichment of down-regulated genes showing loss of H3K9 acetylation at their respective promoter regions revealed enrichment of genes involved in the regulation of transcription, including a number of transcription factors that are predicted to directly or indirectly regulate the expression of 98% of OTA repressed genes. Thus, it is possible that histone acetylation changes in a fairly small set of genes but with key function in transcriptional regulation may trigger a cascade of events that may lead to overall repression of gene expression. Taken together, our data provide evidence for a mechanistic link between loss of H3K9 acetylation as a consequence of OTA-mediated inhibition of HATs and repression of gene expression by OTA, thereby affecting cellular processes critical to tumorigenesis.


Assuntos
Histona Acetiltransferases/antagonistas & inibidores , Histonas/química , Ocratoxinas/toxicidade , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Acetilação , Linhagem Celular , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/citologia , Lisina/química , Regiões Promotoras Genéticas
13.
Arch Toxicol ; 92(1): 15-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29302712

RESUMO

Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.


Assuntos
Biomarcadores/análise , Exposição Dietética/análise , Contaminação de Alimentos/análise , Manipulação de Alimentos , Acroleína/sangue , Acroleína/química , Acroleína/urina , Acrilamida/sangue , Acrilamida/química , Acrilamida/urina , Animais , Furanos/sangue , Furanos/química , Furanos/urina , Humanos , Modelos Biológicos , Medição de Risco/métodos , alfa-Cloridrina/química , alfa-Cloridrina/urina
14.
Arch Toxicol ; 90(6): 1281-92, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27034246

RESUMO

Zearalenone (ZEN), a mycotoxin with high estrogenic activity in vitro and in vivo, is a widespread food contaminant that is commonly detected in maize, wheat, barley, sorghum, rye and other grains. Human exposure estimates based on analytical data on ZEN occurrence in various food categories and food consumption data suggest that human exposure to ZEN and modified forms of ZEN may be close to or even exceed the tolerable daily intake (TDI) derived by the European Food Safety Authority (EFSA) for some consumer groups. Considering the inherent uncertainties in estimating dietary intake of ZEN that may lead to an under- or overestimation of ZEN exposure and consequently human risk and current lack of data on vulnerable consumer groups, there is a clear need for more comprehensive and reliable exposure data to refine ZEN risk assessment. Human biomonitoring (HBM) is increasingly being recognized as an efficient and cost-effective way of assessing human exposure to food contaminants, including mycotoxins. Based on animal and (limited) human data on the toxicokinetics of ZEN, it appears that excretion of ZEN and its major metabolites may present suitable biomarkers of ZEN exposure. In view of the limitations of available dietary exposure data on ZEN and its modified forms, the purpose of this review is to provide an overview of recent studies utilizing HBM to monitor and assess human exposure to ZEN. Considerations are given to animal and human toxicokinetic data relevant to HBM, analytical methods, and available HBM data on urinary biomarkers of ZEN exposure in different cohorts.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Zearalenona/análise , Animais , Biomarcadores/urina , Biotransformação , Poluentes Ambientais/farmacocinética , Humanos , Taxa de Depuração Metabólica , Nível de Efeito Adverso não Observado , Medição de Risco , Distribuição Tecidual , Zearalenona/farmacocinética
15.
Toxicol Appl Pharmacol ; 289(2): 203-12, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431795

RESUMO

Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC-MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity.


Assuntos
Carcinógenos/toxicidade , Metilação de DNA/efeitos dos fármacos , Neoplasias Renais/induzido quimicamente , Rim/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Fígado/efeitos dos fármacos , Animais , Sequência de Bases , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Cromatografia Líquida de Alta Pressão , Ilhas de CpG , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ratos Endogâmicos F344 , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fatores de Tempo
16.
Mol Nutr Food Res ; 67(23): e2200661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840378

RESUMO

The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei). At present, the key question of whether acetaldehyde is genotoxic and mutagenic in vivo after oral exposure cannot be answered conclusively. There is also insufficient data on human exposure. Consequently, it is currently not possible to reliably assess the health risk associated with the use of acetaldehyde as a flavoring substance. However, considering the genotoxic potential of acetaldehyde as well as numerous data gaps that need to be filled to allow a comprehensive risk assessment, the SKLM considers that the use of acetaldehyde as a flavoring may pose a safety concern. For reasons of precautionary consumer protection, the SKLM recommends that the scientific base for approval of the intentional addition of acetaldehyde to foods as a flavoring substance should be reassessed.


Assuntos
Acetaldeído , Aditivos Alimentares , Humanos , Acetaldeído/toxicidade , Medição de Risco , Alimentos
17.
Food Chem Toxicol ; 173: 113632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708862

RESUMO

This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.


Assuntos
Acrilamida , Inocuidade dos Alimentos , Nível de Efeito Adverso não Observado , Acrilamida/toxicidade , Medição de Risco
18.
Toxicol Appl Pharmacol ; 258(1): 124-33, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22061828

RESUMO

Gentamicin is an aminoglycoside antibiotic, which induces renal tubular necrosis in rats. In the context of the European InnoMed PredTox project, transcriptomic and proteomic studies were performed to provide new insights into the molecular mechanisms of gentamicin-induced nephrotoxicity. Male Wistar rats were treated with 25 and 75 mg/kg/day subcutaneously for 1, 3 and 14 days. Histopathology observations showed mild tubular degeneration/necrosis and regeneration and moderate mononuclear cell infiltrate after long-term treatment. Transcriptomic data indicated a strong treatment-related gene expression modulation in kidney and blood cells at the high dose after 14 days of treatment, with the regulation of 463 and 3241 genes, respectively. Of note, the induction of NF-kappa B pathway via the p38 MAPK cascade in the kidney, together with the activation of T-cell receptor signaling in blood cells were suggestive of inflammatory processes in relation with the recruitment of mononuclear cells in the kidney. Proteomic results showed a regulation of 163 proteins in kidney at the high dose after 14 days of treatment. These protein modulations were suggestive of a mitochondrial dysfunction with impairment of cellular energy production, induction of oxidative stress, an effect on protein biosynthesis and on cellular assembly and organization. Proteomic results also provided clues for potential nephrotoxicity biomarkers such as AGAT and PRBP4 which were strongly modulated in the kidney. Transcriptomic and proteomic data turned out to be complementary and their integration gave a more comprehensive insight into the putative mode of nephrotoxicity of gentamicin which was in accordance with histopathological findings.


Assuntos
Antibacterianos/toxicidade , Perfilação da Expressão Gênica , Gentamicinas/toxicidade , Rim/efeitos dos fármacos , Proteômica , Animais , Biomarcadores , Rim/metabolismo , Masculino , Ratos , Ratos Wistar
19.
Front Toxicol ; 4: 863643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785263

RESUMO

In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).

20.
Toxins (Basel) ; 14(7)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35878180

RESUMO

Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.


Assuntos
Micotoxinas , África , Comércio , Contaminação de Alimentos/análise , Fungos , Internacionalidade , Micotoxinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA