RESUMO
Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).
Assuntos
Imunoconjugados , Tomografia Computadorizada de Emissão de Fóton Único , Imunoconjugados/química , Humanos , Animais , Camundongos , Benzodiazepinas/química , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Pirróis/químicaRESUMO
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.
Assuntos
Epilepsia do Lobo Temporal/metabolismo , Proteínas de Membrana/metabolismo , Peroxinas/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Ácido Caínico , Proteínas de Membrana/química , Camundongos Endogâmicos C57BL , Peroxinas/química , Fosforilação , Fosfosserina/metabolismo , Subunidades Proteicas/química , Ratos Sprague-Dawley , Reprodutibilidade dos TestesRESUMO
Treatment of ocular diseases associated with neovascularization currently requires frequent intravitreal injections of antivascular endothelial growth factor (anti-VEGF) therapies. Reducing the required frequency of anti-VEGF injections and associated clinical visits may improve patient adherence to the prescribed treatment regimen and improve outcomes. Herein, we explore conjugation of rabbit and fragment antibodies (Fab) to the biopolymer hyaluronic acid (HA) as a half-life modifying strategy, and assess the impact on Fab biophysical properties and vitreal pharmacokinetics. HA-Fab conjugates of three distinct molecular weights and hydrodynamic radii (RH) were assessed for in vivo pharmacokinetic performance relative to unconjugated Fab after intravitreal injection in rabbits. Covalent conjugation to HA did not significantly alter the thermal stability or secondary or tertiary structure, or diminish the potency of the Fab, thereby preserving its pharmacological properties. Conjugation to HA did significantly slow the in vivo clearance of Fab from the rabbit vitreous in an RH-dependent manner. Compared to free Fab (observed vitreal half-life of 2.8 days), HA-Fab conjugates cleared with observed half-lives of 7.6, 10.2, and 18.3 days for 40 kDa, 200 kDa, and 600 kDa HA conjugates, respectively. This work elucidates a possible strategy for long-acting delivery of proteins intended for the treatment of chronic posterior ocular diseases.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Ácido Hialurônico/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Corpo Vítreo/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Humanos , Injeções Intravítreas , Coelhos , Distribuição Tecidual , Corpo Vítreo/imunologiaRESUMO
Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for cancer immunotherapeutic drug discovery while also revealing limitations in knowledge of structure-activity relationships. The current understanding of renal filtration originates largely from data reported for dextrans, IgG, albumin, and selected globular proteins. For a one-armed IgG-based T-cell imaging agent, we observed higher renal signal than typically observed for bivalent IgGs, prompting us to explore the factors governing renal filtration of biologics. We constructed a small representative library of IgG-like formats with varied shapes and hinge flexibilities falling broadly into two categories: branched molecules including bivalent IgG and (scFv)2Fc, and nonbranched molecules including one-armed IgG, one-armed IgG with stacked Fab, and one-armed IgG with a rigid IgA2 hinge. Transmission electron microscopy revealed Y-shaped structures for the branched molecules and pseudo-linear structures for the nonbranched molecules. Single-photon emission CT imaging, autoradiography, and tissue harvest studies demonstrated higher renal uptake and catabolism for nonbranched molecules relative to branched molecules. Among the nonbranched molecules, the one-armed IgG with rigid IgA2 hinge molecule demonstrated higher kidney uptake and decreased systemic exposure relative to molecules with a more flexible hinge. Our results show that differences in shape and hinge flexibility drive the increased glomerular filtration of one-armed relative to bivalent antibodies and highlight the practical advantages of using imaging to assess renal filtration properties. These findings are particularly relevant for T-cell-dependent bispecific molecules, many of which have nonstandard antibody structures.
Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Barreira de Filtração Glomerular/metabolismo , Imunoglobulina G/imunologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Feminino , Barreira de Filtração Glomerular/efeitos dos fármacos , Humanos , Imunoglobulina G/classificação , Camundongos SCIDRESUMO
T-cell-dependent bispecific antibodies (TDB) have been a major advancement in the treatment of cancer, allowing for improved targeting and efficacy for large molecule therapeutics. TDBs are comprised of one arm targeting a surface antigen on a cancer cell and another targeting an engaging surface antigen on a cytotoxic T cell. To impart this function, the antibody must be in a bispecific format as opposed to the more conventional bivalent format. Through in vitro and in vivo studies, we sought to determine the impact of changing antibody valency on solid tumor distribution and catabolism. A bivalent anti-HER2 antibody exhibited higher catabolism than its full-length monovalent binding counterpart in vivo by both invasive tissue harvesting and noninvasive single photon emission computed tomography/X-ray computed tomography imaging despite similar systemic exposures for the two molecules. To determine what molecular factors drove in vivo distribution and uptake, we developed a mechanistic model for binding and catabolism of monovalent and bivalent HER2 antibodies in KPL4 cells. This model suggests that observed differences in cellular uptake of monovalent and bivalent antibodies are caused by the change in apparent affinity conferred by avidity as well as differences in internalization and degradation rates of receptor bound antibodies. To our knowledge, this is the first study to directly compare the targeting abilities of monovalent and bivalent full-length antibodies. These findings may inform diverse antibody therapeutic modalities, including T-cell-redirecting therapies and drug delivery strategies relying upon receptor internalization.
Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/farmacocinética , Afinidade de Anticorpos , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Linfócitos T Citotóxicos/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Apoptose , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , Receptor ErbB-2/imunologia , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Ovarian cancer is a diverse class of tumors with very few effective treatment options and suboptimal response rates in early clinical studies using immunotherapies. Here we describe LY6/PLAUR domain containing 1 (LYPD1) as a novel target for therapeutic antibodies for the treatment of ovarian cancer. LYPD1 is broadly expressed in both primary and metastatic ovarian cancer with â¼70% prevalence in the serous cancer subset. Bispecific antibodies targeting CD3 on T cells and a tumor antigen on cancer cells have demonstrated significant clinical activity in hematologic cancers. We have developed an anti-LYPD1/CD3 T-cell-dependent bispecific antibody (TDB) to redirect T-cell responses to LYPD1 expressing ovarian cancer. Here we characterize the nonclinical pharmacology of anti-LYPD1/CD3 TDB and show induction of a robust polyclonal T-cell activation and target dependent killing of LYPD1 expressing ovarian cancer cells resulting in efficient in vivo antitumor responses in PBMC reconstituted immune-deficient mice and human CD3 transgenic mouse models. Anti-LYPD1/CD3 TDB is generally well tolerated at high-dose levels in mice, a pharmacologically relevant species, and showed no evidence of toxicity or damage to LYPD1 expressing tissues.
Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/patologiaRESUMO
Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.
Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Antineoplásicos/imunologia , Imunoconjugados/imunologia , Oligopeptídeos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Feminino , Proteínas Ligadas por GPI/imunologia , Células HEK293 , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Camundongos SCID , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologiaRESUMO
Full-length antibodies lack ideal pharmacokinetic properties for rapid targeted imaging, prompting the pursuit of smaller peptides and fragments. Nevertheless, studying the disposition properties of antibody-based imaging agents can provide critical insight into the pharmacology of their therapeutic counterparts, particularly for those coupled with potent payloads. Here, we evaluate modulation of binding to the neonatal Fc receptor (FcRn) as a protein engineering-based pharmacologic strategy to minimize the overall blood pool background with directly labeled antibodies and undesirable systemic click reaction of radiolabeled tetrazine with circulating pretargeted trans-cyclooctene (TCO)-modified antibodies. Noninvasive SPECT imaging of mice bearing HER2-expressing xenografts was performed both directly (111In-labeled antibody) and indirectly (pretargeted TCO-modified antibody followed by 111In-labeled tetrazine). Pharmacokinetic modulation of antibodies was achieved by two distinct methods: Fc engineering to reduce binding affinity to FcRn, and delayed administration of an antibody that competes with binding to FcRn. Tumor imaging with directly labeled antibodies was feasible in the absence of FcRn binding, rapidly attaining high tumor-to-blood ratios, but accompanied by moderate liver and spleen uptake. Pretargeted imaging of tumors with non-FcRn-binding antibody was also feasible, but systemic click reaction still occurred, albeit at lower levels than with parental antibody. Our findings demonstrate that FcRn binding impairment of full-length IgG antibodies moderately lowers tumor accumulation of radioactivity, and shifts background activity from blood pool to liver and spleen. Furthermore, reduction of FcRn binding did not eliminate systemic click reaction, but yielded greater improvements in tumor-to-blood ratio when imaging with directly labeled antibodies than with pretargeting.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Receptores Fc/metabolismo , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Química Click , Feminino , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos SCID , Receptor ErbB-2/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton ÚnicoRESUMO
Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy. Recent isolations of novel AAV serotypes have led to significant advances by broadening the tropism and increasing the efficiency of gene transfer to the desired target cell. However, a major concern that remains is the strong preexisting immune responses to several vectors. In this paper, we describe the isolation and characterization of AAV12, an AAV serotype with unique biological and immunological properties. In contrast to those of all other reported AAVs, AAV12 cell attachment and transduction do not require cell surface sialic acids or heparan sulfate proteoglycans. Furthermore, rAAV12 is resistant to neutralization by circulating antibodies from human serum. The feasibility of rAAV12 as a vector was demonstrated in a mouse model in which muscle and salivary glands were transduced. These characteristics make rAAV12 an interesting candidate for gene transfer applications.
Assuntos
Dependovirus/classificação , Dependovirus/fisiologia , Transdução Genética , Animais , Anticorpos Antivirais , Dependovirus/imunologia , Dependovirus/isolamento & purificação , Vetores Genéticos , Haplorrinos , Heparitina Sulfato/fisiologia , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/fisiologia , Testes de Neutralização , Infecções por Parvoviridae/virologia , Análise de Sequência de DNA , Proteínas Virais/genéticaRESUMO
IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA. We further explore two strategies to overcome the rapid serum clearance of polymeric IgA: removal of all N-linked glycosylation sites creating an aglycosylated polymeric IgA and engineering in FcRn binding with the generation of a polymeric IgG-IgA Fc fusion. While previous reports and the results presented in this study indicate that glycan-mediated clearance plays a major role for monomeric IgA, systemic clearance of polymeric IgA in mice is predominantly controlled by mechanisms other than glycan receptor clearance, such as pIgR-mediated transcytosis. The developed IgA platform now provides the potential to specifically target pIgR expressing tissues, while maintaining low systemic exposure.
Assuntos
Anticorpos Monoclonais Murinos/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Monoclonais Murinos/genética , Cães , Feminino , Glicosilação , Meia-Vida , Humanos , Imunoglobulina A/genética , Imunoglobulina G/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genéticaRESUMO
We previously performed a comparative assessment of tissue-level vascular physiological parameters in mice and rats, two of the most commonly utilized species in translational drug development. The present work extends this effort to non-human primates by measuring tissue- and organ-level vascular volumes (Vv), interstitial volumes (Vi), and blood flow rates (Q) in cynomolgus monkeys. These measurements were accomplished by red blood cell labeling, extracellular marker infusion, and rubidium chloride bolus distribution, respectively, the same methods used in previous rodent measurements. In addition, whole-body blood volumes (BV) were determined across species. The results demonstrate that Vv, Vi, and Q, measured using our methods scale approximately by body weight across mouse, rat, and monkey in the tissues considered here, where allometric analysis allowed extrapolation to human parameters. Significant differences were observed between the values determined in this study and those reported in the literature, including Vv in muscle, brain, and skin and Q in muscle, adipose, heart, thymus, and spleen. The impact of these differences for selected tissues was evaluated via sensitivity analysis using a physiologically based pharmacokinetic model. The blood-brain barrier in monkeys was shown to be more impervious to an infused radioactive tracer, indium-111-pentetate, than in mice or rats. The body weight-normalized total BV measured in monkey agreed well with previously measured value in rats but was lower than that in mice. These findings have important implications for the common practice of scaling physiological parameters from rodents to primates in translational pharmacology.
Assuntos
Desenvolvimento de Medicamentos/métodos , Modelos Animais , Pesquisa Farmacêutica/métodos , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Volume Sanguíneo/fisiologia , Barreira Hematoencefálica/metabolismo , Peso Corporal/fisiologia , Feminino , Macaca fascicularis/fisiologia , Masculino , Camundongos/fisiologia , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos/fisiologia , Especificidade da Espécie , Distribuição TecidualRESUMO
Neuregulin 1 (NRG1) is required for development of the central and peripheral nervous system and regulates neurotransmission in the adult. NRG1 and the gene encoding its receptor, ERBB4, are risk genes for schizophrenia, although how alterations in these genes disrupt their function has not been fully established. Studies of knockout and transgenic mice have yielded conflicting results, with both gain and loss of function resulting in similar behavioral and electrophysiological phenotypes. Here, we used high affinity antibodies to NRG1 and ErbB4 to perturb the function of the endogenous proteins in adult mice. Treatment with NRG1 antibodies that block receptor binding caused behavioral alterations associated with schizophrenia, including, hyper-locomotion and impaired pre-pulse inhibition of startle (PPI). Electrophysiological analysis of brain slices from anti-NRG1 treated mice revealed reduced synaptic transmission and enhanced paired-pulse facilitation. In contrast, mice treated with more potent ErbB4 function blocking antibodies did not display behavioral alterations, suggesting a receptor independent mechanism of the anti-NRG1-induced phenotypes. We demonstrate that anti-NRG1 causes accumulation of the full-length transmembrane protein and increases phospho-cofilin levels, which has previously been linked to impaired synaptic transmission, indicating enhancement of non-canonical NRG1 signaling could mediate the CNS effects.
Assuntos
Sistema Nervoso Central/fisiologia , Eletrofisiologia/métodos , Neuregulina-1/metabolismo , Esquizofrenia/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Modelos Animais de Doenças , Predisposição Genética para Doença , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuregulina-1/genética , Neuregulina-1/imunologia , Estabilidade Proteica , Receptor ErbB-4/genética , Receptor ErbB-4/imunologia , Receptor ErbB-4/metabolismo , Risco , Esquizofrenia/genética , Transdução de Sinais , Transmissão SinápticaRESUMO
Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder 'click' reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.
Assuntos
Anticorpos Monoclonais/química , Química Click/métodos , Imunoconjugados/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Compostos Heterocíclicos com 1 Anel/química , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Marcação por Isótopo/métodos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/terapia , Radioimunoterapia/métodos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Voltage-gated K+ (Kv) channels play important roles in regulating neuronal excitability. Kv channels comprise four principal α subunits, and transmembrane and/or cytoplasmic auxiliary subunits that modify diverse aspects of channel function. AMIGO-1, which mediates homophilic cell adhesion underlying neurite outgrowth and fasciculation during development, has recently been shown to be an auxiliary subunit of adult brain Kv2.1-containing Kv channels. We show that AMIGO-1 is extensively colocalized with both Kv2.1 and its paralog Kv2.2 in brain neurons across diverse mammals, and that in adult brain, there is no apparent population of AMIGO-1 outside of that colocalized with these Kv2 α subunits. AMIGO-1 is coclustered with Kv2 α subunits at specific plasma membrane (PM) sites associated with hypolemmal subsurface cisternae at neuronal ER:PM junctions. This distinct PM clustering of AMIGO-1 is not observed in brain neurons of mice lacking Kv2 α subunit expression. Moreover, in heterologous cells, coexpression of either Kv2.1 or Kv2.2 is sufficient to drive clustering of the otherwise uniformly expressed AMIGO-1. Kv2 α subunit coexpression also increases biosynthetic intracellular trafficking and PM expression of AMIGO-1 in heterologous cells, and analyses of Kv2.1 and Kv2.2 knockout mice show selective loss of AMIGO-1 expression and localization in neurons lacking the respective Kv2 α subunit. Together, these data suggest that in mammalian brain neurons, AMIGO-1 is exclusively associated with Kv2 α subunits, and that Kv2 α subunits are obligatory in determining the correct pattern of AMIGO-1 expression, PM trafficking and clustering.
RESUMO
Anti-HER2/CD3, a T-cell-dependent bispecific antibody (TDB) construct, induces T-cell-mediated cell death in cancer cells expressing HER2 by cross-linking tumor HER2 with CD3 on cytotoxic T cells, thereby creating a functional cytolytic synapse. TDB design is a very challenging process that requires consideration of multiple parameters. Although therapeutic antibody design strategy is commonly driven by striving for the highest attainable antigen-binding affinity, little is known about how the affinity of each TDB arm can affect the targeting ability of the other arm and the consequent distribution and efficacy. To our knowledge, no distribution studies have been published using preclinical models wherein the T-cell-targeting arm of the TDB is actively bound to T cells. We used a combined approach involving radiochemistry, invasive biodistribution, and noninvasive single-photon emission tomographic (SPECT) imaging to measure TDB distribution and catabolism in transgenic mice with human CD3ε expression on T cells. Using CD3 affinity variants, we assessed the impact of CD3 affinity on short-term pharmacokinetics, tissue distribution, and cellular uptake. Our experimental approach determined the relative effects of (i) CD3 targeting to normal tissues, (ii) HER2 targeting to HER2-expressing tumors, and (iii) relative HER2/CD3 affinity, all as critical drivers for TDB distribution. We observed a strong correlation between CD3 affinity and distribution to T-cell-rich tissues, with higher CD3 affinity reducing systemic exposure and shifting TDB distribution away from tumor to T-cell-containing tissues. These observations have important implications for clinical translation of bispecific antibodies for cancer immunotherapy. Mol Cancer Ther; 17(4); 776-85. ©2018 AACR.
Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/farmacocinética , Complexo CD3/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Receptor ErbB-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Afinidade de Anticorpos , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/patologia , Distribuição Tecidual , Células Tumorais CultivadasRESUMO
Target receptor levels can influence pharmacokinetics (PK) or pharmacodynamics (PD) of monoclonal antibodies (mAbs), and can affect drug development of this class of molecules. We generated an effector-less humanized bispecific antibody that selectively activates fibroblast growth factor receptor (FGFR)1 and ßKlotho receptor, a FGF21 receptor complex highly expressed in both white and brown adipocytes. The molecule shows cross-species binding with comparable equilibrium binding affinity (Kd) for human, cynomolgus monkey, and mouse FGFR1/ßKlotho. To understand the PK/PD relationship in non-obese and obese animals, we evaluated the adipose tissue distribution of the antibody, serum exposures, and an associated PD marker (high-molecular-weight adiponectin), in both non-obese and obese mice and monkeys. Antibody uptake into fat tissue was found to be higher on a per gram basis in non-obese animals compared to obese animals. Since obesity has been reported to be associated with reduced expression of FGFR1 and ßKlotho receptor in white adipose tissues in mice, our results suggest that the distribution in adipose tissues was influenced by target expression levels. Even so, the overall dose-normalized serum exposures were comparable between non-obese and obese mice and monkeys, suggesting that adipose tissue uptake plays a limited role in overall systemic PK determination. It remains to be determined if and how obesity and receptor expression in humans influence the PK and PD profile of this novel therapeutic candidate.
Assuntos
Tecido Adiposo/metabolismo , Anticorpos Monoclonais/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Obesidade/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetinae , Cricetulus , Dieta Hiperlipídica/efeitos adversos , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/imunologia , Fatores de Crescimento de Fibroblastos/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Distribuição TecidualRESUMO
The Kv2.1 voltage-gated K+ channel is widely expressed throughout mammalian brain, where it contributes to dynamic activity-dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+ -release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy-immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR-mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing green fluorescent protein in specific MSN populations reveals the most prominent juxtaposed Kv2.1:RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared with levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared with those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage dependence of activation of Kv2.1, typical of Ca2+ /calcineurin-dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell- and circuit-specific mechanism for coupling intracellular Ca2+ release to phosphorylation-dependent regulation of Kv2.1 to dynamically impact intrinsic excitability.