Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573833

RESUMO

In the 1940s and 1950s, researchers seeking safe and novel ways to eliminate airborne pathogens from enclosed spaces, investigated glycol vapours as a method of disinfection. More recently, the COVID-19 pandemic highlighted the need for a non-toxic aerial disinfectant that can be used in the presence of people. This scoping review is intended to analyse the early and more recent literature on glycol disinfection, scrutinizing the methodologies used, and to determine if the use of glycols as modern-day disinfectants is justified PRISMA-ScR guidelines were used to assess the 749 articles retrieved from the Web of Science platform, with 46 articles retained after the search strategy was applied. Early studies generally demonstrated good disinfection capabilities against airborne bacteria and viruses, particularly with propylene glycol (PG) vapour. Vapour pressure, relative humidity, and glycol concentration were found to be important factors affecting the efficacy of glycol vapours. Contact times depended mainly on the glycol application method (i.e. aerosolization or liquid formulation), although information on how glycol efficacy is impacted by contact time is limited. Triethylene glycol (TEG) is deemed to have low toxicity, carcinogenicity, and mutagenicity and is registered for use in air sanitization and deodorization by the US Environmental Protection Agency. Glycols are also used in liquid formulations for their antimicrobial activity against a wide range of microorganisms, although when used as a non-active excipient in products, their contribution to antimicrobial efficacy is rarely assessed. The appropriate use of liquid glycol-containing formulations was found to positively impact the antimicrobial capabilities of disinfectants when used at temperatures <0, food preservatives, and dental medicaments. Providing modern delivery technology can accurately control environmental conditions, the use of aerosolized glycol formulations should lead to successful disinfection, aiding infection prevention, and control regimens.


Assuntos
Anti-Infecciosos , Desinfetantes , Humanos , Pandemias/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/métodos , Anti-Infecciosos/farmacologia , Propilenoglicol/farmacologia , Gases
2.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37951298

RESUMO

There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants. ONE-SENTENCE SUMMARY: This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.


Assuntos
Ascomicetos , Produtos Biológicos , Desinfetantes , Antifúngicos/farmacologia , Desinfetantes/farmacologia , Produtos Biológicos/farmacologia , Proteínas Fúngicas , Fungos
3.
J Appl Microbiol ; 133(5): 3083-3093, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35916494

RESUMO

AIMS: The aim of this study was to determine how the transfer efficiency of MS-2 coliphage from the toilet seat to hands and fingertip to lip differs according to the suspension of the inoculum. METHODS AND RESULTS: Hands were sampled after lifting a toilet seat which was inoculated with MS-2 on the underneath side. MS-2 was suspended in a spectrum of proteinaceous and non-proteinaceous solutions. Transfer efficiencies were greatest with the ASTM tripartite soil load (3.02% ± 4.03) and lowest with phosphate-buffered saline (PBS) (1.10% ± 0.81) for hand-to-toilet seat contacts. Finger-to-lip transfer rates were significantly different (p < 0.05) depending on suspension matrix, with PBS yielding the highest transfer (52.53% ± 4.48%) and tryptose soy broth (TSB) the lowest (23.15% ± 24.27%). Quantitative microbial risk assessment was used to estimate the probability of infection from adenovirus and norovirus from finger contact with a toilet seat. CONCLUSIONS: The greatest transfer as well as the largest variation of transfer were measured for finger-to-lip contacts as opposed to toilet seat-to-finger contacts. These factors influence the estimation of the probability of infection from micro-activity, that is, toilet seat adjustment. SIGNIFICANCE AND IMPACT: Viruses may be transferred from various human excreta with differing transfer efficiencies, depending on the protein content.


Assuntos
Norovirus , Vírus , Humanos , Dedos , Solo , Fosfatos
4.
Appl Environ Microbiol ; 87(14): e0300220, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33962979

RESUMO

Laundering of textiles-clothing, linens, and cleaning cloths-functionally removes dirt and bodily fluids, which prevents the transmission of and reexposure to pathogens as well as providing odor control. Thus, proper laundering is key to controlling microbes that cause illness and produce odors. The practice of laundering varies from region to region and is influenced by culture and resources. This review aims to define laundering as a series of steps that influence the exposure of the person processing the laundry to pathogens, with respect to the removal and control of pathogens and odor-causing bacteria, while taking into consideration the types of textiles. Defining laundering in this manner will help better educate the consumer and highlight areas where more research is needed and how to maximize products and resources. The control of microorganisms during laundering involves mechanical (agitation and soaking), chemical (detergent and bleach), and physical (detergent and temperature) processes. Temperature plays the most important role in terms of pathogen control, requiring temperatures exceeding 40°C to 60°C for proper inactivation, while detergents play a role in reducing the microbial load of laundering through the release of microbes attached to fabrics and the inactivation of microbes sensitive to detergents (e.g., enveloped viruses). The use of additives (enzymes) and bleach (chlorine and activated oxygen) becomes essential in washes with temperatures below 20°C, especially for certain enteric viruses and bacteria. A structured approach is needed that identifies all the steps in the laundering process and attempts to identify each step relative to its importance to infection risk and odor production.


Assuntos
Vestuário , Higiene , Lavanderia/métodos , Microbiota , Odorantes , Humanos , Lavanderia/instrumentação , Têxteis
5.
Food Microbiol ; 91: 103501, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539981

RESUMO

Stability of probiotic products' potency throughout shelf life is essential to ensure systematic delivery of the dosages required to provide clinically-proven health benefits. Due to the oxygen sensitivity of gut-derived microorganisms, methods for the rapid and accurate monitoring of oxidative stress in probiotics are greatly needed as they can be instrumental to both bioprocess optimization and quality control. This study introduces a next-generation flow cytometry method multiplexing the CellROX® Green and Propidium Iodide probes for the simultaneous measurement of free total reactive oxygen species (ROS) and membrane integrity, respectively. The multiparameter method was compared to the single-parameter assays, measuring either ROS or membrane integrity, for the ability to evaluate the fitness of Lactobacillus rhamnosus GG (LGG) after freeze drying, spray drying and H2O2-mediated oxidative stress. Each stand-alone assay detected only three cell populations, showing either differential membrane integrity (Syto 24+/PI-, Syto 24+/PI+, Syto 24-/PI+) or ROS levels (ROS-, low-ROS, high-ROS), and no correlation could be drawn between these groups. Conversely, the multiparameter method detected up to five physiologically distinct cell populations and allowed the integrated assessment of their membrane integrity and oxidative stress. It also revealed a much larger fitness heterogeneity in LGG as each group of low-ROS and high-ROS cells was found to be formed by a healthier population with an intact membrane (L-ROS/PI-, H-ROS/PI-) and a population with damaged membrane (L-ROS/PI+, H-ROS/PI+). As the CRG probe only detects free unreacted ROS, these populations are suggested to reflect the dynamic lifecycle of ROS formation, accumulation and reactive depletion leading to oxidative damage of macromolecules and consequent cell death. With the stand-alone CRG assay being unable to detect ROS lifecycle, the multiparameter method here presented delivers a superior profiling of the heterogeneity generated by oxidative stress in bacteria and enables a more correct interpretation of CRG fluorescence data. We provide recent examples from literature where the use of a single-parameter fluorescence approach may have led to misinterpret oxidative stress data and eventually draw erroneous conclusions.


Assuntos
Citometria de Fluxo/métodos , Estresse Oxidativo , Probióticos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dessecação , Corantes Fluorescentes , Peróxido de Hidrogênio/farmacologia , Lacticaseibacillus rhamnosus/citologia , Lacticaseibacillus rhamnosus/efeitos dos fármacos , Lacticaseibacillus rhamnosus/fisiologia , Viabilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo
6.
BMC Public Health ; 16: 975, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27624540

RESUMO

BACKGROUND: In the United States, disparities in health literacy parallel disparities in health outcomes. Our research contributes to how diverse indicators of social inequalities (i.e., objective social class, relational social class, and social resources) contribute to understanding disparities in health literacy. METHODS: We analyze data on respondents 18 years of age and older (N = 14,592) from the 2003 National Assessment of Adult Literacy (NAAL) restricted access data set. A series of weighted Ordinary Least Squares (OLS) regression models estimate the association between respondent's demographic characteristics, socioeconomic status (SES), relational social class, social resources and an Item Response Theory (IRT) based health literacy measure. RESULTS: Our findings are consistent with previous research on the social and SES determinants of health literacy. However, our findings reveal the importance of relational social status for understanding health literacy disparities in the United States. Objective indicators of social status are persistent and robust indicators of health literacy. Measures of relational social status such as civic engagement (i.e., voting, volunteering, and library use) are associated with higher health literacy levels net of objective resources. Social resources including speaking English and marital status are associated with higher health literacy levels. CONCLUSIONS: Relational indicators of social class are related to health literacy independent of objective social class indicators. Civic literacy (e.g., voting and volunteering) are predictors of health literacy and offer opportunities for health intervention. Our findings support the notion that health literacy is a social construct and suggest the need to develop a theoretically driven conceptual definition of health literacy that includes a civic literacy component.


Assuntos
Letramento em Saúde/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Classe Social , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos , Inquéritos e Questionários , Estados Unidos , Adulto Jovem
7.
Microbiol Mol Biol Rev ; : e0020522, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958456

RESUMO

SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.

8.
J Morphol ; 285(5): e21699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715161

RESUMO

In 1974, Sue Herring described the relationship between two important performance variables in the feeding system, bite force and gape. These variables are inversely related, such that, without specific muscular adaptations, most animals cannot produce high bite forces at large gapes for a given sized muscle. Despite the importance of these variables for feeding biomechanics and functional ecology, the paucity of in vivo bite force data in primates has led to bite forces largely being estimated through ex vivo methods. Here, we quantify and compare in vivo bite forces and gapes with output from simulated musculoskeletal models in two craniofacially distinct strepsirrhines: Eulemur, which has a shorter jaw and slower chewing cycle durations relative to jaw length and body mass compared to Varecia. Bite forces were collected across a range of linear gapes from 16 adult lemurs (suborder Strepsirrhini) at the Duke Lemur Center in Durham, North Carolina representing three species: Eulemur flavifrons (n = 6; 3F, 3M), Varecia variegata (n = 5; 3F, 2M), and Varecia rubra (n = 5; 5F). Maximum linear and angular gapes were significantly higher for Varecia compared to Eulemur (p = .01) but there were no significant differences in recorded maximum in vivo bite forces (p = .88). Simulated muscle models using architectural data for these taxa suggest this approach is an accurate method of estimating bite force-gape tradeoffs in addition to variables such as fiber length, fiber operating range, and gapes associated with maximum force. Our in vivo and modeling data suggest Varecia has reduced bite force capacities in favor of absolutely wider gapes compared to Eulemur in relation to their longer jaws. Importantly, our comparisons validate the simulated muscle approach for estimating bite force as a function of gape in extant and fossil primates.


Assuntos
Força de Mordida , Animais , Fenômenos Biomecânicos , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Lemur/fisiologia , Lemur/anatomia & histologia , Mastigação/fisiologia , Masculino , Feminino
9.
Food Environ Virol ; 16(1): 65-78, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372960

RESUMO

Restroom use has been implicated in a number of viral outbreaks. In this study, we apply quantitative microbial risk assessment to quantify the risk of viral transmission by contaminated restroom fomites. We estimate risk from high-touch fomite surfaces (entrance/exit door, toilet seat) for three viruses of interest (SARS-CoV-2, adenovirus, norovirus) through eight exposure scenarios involving differing user behaviors, and the use of hand sanitizer following each scenario. We assessed the impacts of several sequences of fomite contacts in the restroom, reflecting the variability of human behavior, on infection risks for these viruses. Touching of the toilet seat was assumed to model adjustment of the seat (open vs. closed), a common touch point in single-user restrooms (home, small business, hospital). A Monte Carlo simulation was conducted for each exposure scenario (10,000 simulations each). Norovirus resulted in the highest probability of infection for all exposure scenarios with fomite surfaces. Post-restroom automatic-dispensing hand sanitizer use reduced the probability of infection for each virus by up to 99.75%. Handwashing within the restroom, an important risk-reduction intervention, was not found to be as effective as use of a non-touch hand sanitizer dispenser for reducing risk to near or below 1/1,000,000, a commonly used risk threshold for comparison.


Assuntos
Higienizadores de Mão , Norovirus , Vírus , Humanos , Banheiros , Fômites , Norovirus/genética , Medição de Risco
10.
Food Environ Virol ; 15(4): 265-280, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37906416

RESUMO

Plant extracts, natural products and plant oils contain natural virucidal actives that can be used to replace active ingredients in commercial sanitizers and disinfectants. This review focuses on the virucidal mechanisms of natural substances that may exhibit potential for indoor air and fomite disinfection. Review of scientific studies indicates: (1) most natural product studies use crude extracts and do not isolate or identify exact active antiviral substances; (2) many natural product studies contain unclear explanations of virucidal mechanisms of action; (3) natural product evaluations of virucidal activity should include methods that validate efficacy under standardized disinfectant testing procedures (e.g., carrier tests on applicable surfaces or activity against aerosolized viruses, etc.). The development of natural product disinfectants requires a better understanding of the mechanisms of action (MOA), chemical profiles, compound specificities, activity spectra, and the chemical formulations required for maximum activity. Combinations of natural antiviral substances and possibly the addition of synthetic compounds might be needed to increase inactivation of a broader spectrum of viruses, thereby providing the required efficacy for surface and air disinfection.


Assuntos
Produtos Biológicos , Desinfetantes , Vírus , Desinfetantes/farmacologia , Desinfetantes/química , Produtos Biológicos/farmacologia , Desinfecção/métodos , Antivirais/farmacologia , Antivirais/química
11.
Sci Rep ; 13(1): 12983, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563252

RESUMO

The World Health Organization's R&D Blueprint list of priority diseases for 2022 includes Lassa fever, signifying the need for research and development in emergency contexts. This disease is caused by the arenavirus Lassa virus (LASV). Being an enveloped virus, LASV should be susceptible to a variety of microbicidal actives, although empirical data to support this expectation are needed. We evaluated the virucidal efficacy of sodium hypochlorite, ethanol, a formulated dual quaternary ammonium compound, an accelerated hydrogen peroxide formulation, and a p-chloro-m-xylenol formulation, per ASTM E1052-20, against LASV engineered to express green fluorescent protein (GFP). A 10-µL volume of virus in tripartite soil (bovine serum albumin, tryptone, and mucin) was combined with 50 µL of disinfectant in suspension for 0.5, 1, 5, or 10 min at 20-25 °C. Neutralized test mixtures were quantified by GFP expression to determine log10 reduction. Remaining material was passaged on Vero cells to confirm absence of residual infectious virus. Input virus titers of 6.6-8.0 log10 per assay were completely inactivated by each disinfectant within 1-5 min contact time. The rapid and substantial inactivation of LASV suggests the utility of these microbicides for mitigating spread of infectious virus during Lassa fever outbreaks.


Assuntos
Anti-Infecciosos , Desinfetantes , Febre Lassa , Animais , Chlorocebus aethiops , Humanos , Vírus Lassa , Febre Lassa/prevenção & controle , Células Vero , Anti-Infecciosos/metabolismo , Desinfetantes/farmacologia , Desinfetantes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
12.
PeerJ ; 11: e16420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025703

RESUMO

During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.


Assuntos
COVID-19 , Aerossóis e Gotículas Respiratórios , Estados Unidos , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Fômites , Poeira
13.
Am J Infect Control ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38276944

RESUMO

BACKGROUND: Viral aerosols generated during toilet flushing represent a potential route of pathogen transmission. The goal of this study was to determine the impact of toilet lid closure prior to flushing on the generation of viral aerosols and cross-contamination of restroom fomites. METHODS: A surrogate for human enteric viruses (bacteriophage MS2) was added to household and public toilet bowls and flushed. The resulting viral contamination of the toilet and other restroom surfaces was then determined. RESULTS: After flushing the inoculated toilets, toilet seat bottoms averaged >107 PFU/100 cm2. Viral contamination of restroom surfaces did not depend on toilet lid position (up or down). After toilet bowls were cleaned using a bowl brush with or without a commercial product (hydrochloric acid), a >4 log10 (>99.99%) reduction in contamination of the toilet bowl water was observed versus no product. Bowl brush contamination was reduced by 1.6 log10 (97.64%) when the product was used versus no product. CONCLUSIONS: These results demonstrate that closing the toilet lid prior to flushing does not mitigate the risk of contaminating bathroom surfaces and that disinfection of all restroom surfaces (ie, toilet rim, floors) may be necessary after flushing or after toilet brush used for the reduction of virus cross-contamination.

14.
Life (Basel) ; 12(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35888077

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving, with emergence of mutational variants due to the error-prone replication process of RNA viruses, in general. More recently, the Delta and Omicron variants (including sub-variants BA.1-5) predominate globally, and a Delta-Omicron recombinant termed Deltacron has emerged. The emergence of variants of concern (VOC) demonstrating immune evasion and potentially greater transmissibility and virulence naturally raises concern in both the infection control communities and the public at large, as to the continued suitability of interventions intended to mitigate the risk of viral dissemination and acquisition of the associated disease COVID-19. We evaluated the virucidal efficacy of targeted surface hygiene products (an ethanol/quaternary ammonium compound (QAC)-containing disinfectant spray, a QAC disinfectant wipe, a lactic acid disinfectant wipe, and a citric acid disinfectant wipe) through both theoretical arguments and empirical testing using international standard methodologies (ASTM E1053-20 hard surface test and EN14476:2013+A2:2019 suspension test) in the presence of soil loads simulating patients' bodily secretions/excretions containing shed virus. The results demonstrate, as expected, complete infectious viral inactivation (≥3.0 to ≥4.7 log10 reduction in infectious virus titer after as little as 15 s contact time at room temperature) by these surface hygiene agents of the original SARS-CoV-2 isolate and its Beta and Delta VOC. Through appropriate practices of targeted surface hygiene, it is expected that irrespective of the SARS-CoV-2 VOC encountered as the current pandemic unfolds (and, for that matter, any emerging and/or re-emerging enveloped virus), the chain of infection from virus-contaminated fomites to the hand and mucous membranes of a susceptible person may be disrupted.

15.
Sci Rep ; 12(1): 5247, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347149

RESUMO

The clothes laundering process affords numerous opportunities for dissemination of infectious virus from contaminated clothing to appliance surfaces and other household surfaces and eventually to launderer's hands. We have explored the efficacy of laundry sanitizers for inactivating coronaviruses and influenza viruses. Virucidal efficacy was tested using standardized suspension inactivation methods (EN 14476) or hard-surface inactivation methods (ASTM E1053-20) against SARS-CoV-2, human coronavirus 229E (HCoV 229E), influenza A virus (2009-H1N1 A/Mexico), or influenza B virus (B/Hong Kong). Efficacy was measured in terms of log10 reduction in infectious virus titer, after 15 min contact time (suspension studies) or 5 min contact time (hard surface studies) at 20 ± 1 °C. In liquid suspension studies, laundry sanitizers containing p-chloro-m-xylenol (PCMX) or quaternary ammonium compounds (QAC) caused complete inactivation (≥ 4 log10) of HCoV 229E and SARS-CoV-2 within 15 min contact time at 20 ± 1 °C. In hard surface studies, complete inactivation (≥ 4 log10) of each coronavirus or influenza virus, including SARS-CoV-2, was observed following a 5-min contact time at 20 ± 1 °C. Respiratory viruses may remain infectious on clothing/fabrics and environmental surfaces for hours to days. The use of a laundry sanitizer containing microbicidal actives may afford mitigation of the risk of contamination of surfaces during handling of the laundry and washing appliances (i.e., washer/dryer or basin), adjacent surfaces, the waste water stream, and the hands of individuals handling clothes contaminated with SARS-CoV-2, influenza viruses, or other emerging enveloped viruses.


Assuntos
COVID-19 , Coronavirus Humano 229E , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , COVID-19/prevenção & controle , Humanos , SARS-CoV-2
16.
J Health Commun ; 16 Suppl 3: 11-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21951240

RESUMO

Although the field of health literacy is experiencing tremendous growth in terms of producing peer-reviewed journal articles and attracting practitioners, the foundation of that growth is potentially unstable. Despite a steady increase in their number, existing measures and screeners of health literacy are not based on an accepted conceptual framework and fail to align with the growing body of theoretical and applied work. Existing measures are mainly focused on assessing what individuals can read and understand in clinical contexts. This leaves important factors untested, such as how individuals use information, and how health professionals and systems communicate with patients. This article outlines key elements of a proposed research agenda focusing on development of a new, comprehensive approach to measuring health literacy.


Assuntos
Letramento em Saúde , Pesquisa sobre Serviços de Saúde/organização & administração , Escolaridade , Humanos
17.
Nurs Outlook ; 59(2): 95-106.e1, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21402205

RESUMO

Health literacy continues to experience the normal growing pains of an emerging field of inquiry and practice. The evolving concept of health literacy requires the development of new measurement tools to adequately study interventions and identify best practices. This article describes a multistage process of engaging the largest known international group of health literacy professionals in an online discussion about health literacy measurement. The goal was to gather input and identify important themes in the discussion using both quantitative and qualitative evaluation methods to gauge the strength of any consensus about health literacy measurement and start to identify topics that should be considered and addressed by those working to develop new tools to measure health literacy.


Assuntos
Letramento em Saúde , Psicometria/métodos , Humanos
18.
Sci Rep ; 11(1): 5626, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707476

RESUMO

Mitigating the risk of acquiring coronaviruses including SARS-CoV-2 requires awareness of the survival of virus on high-touch environmental surfaces (HITES) and skin, and frequent use of targeted microbicides with demonstrated efficacy. The data on stability of infectious SARS-CoV-2 on surfaces and in suspension have been put into perspective, as these inform the need for hygiene. We evaluated the efficacies of formulated microbicidal actives against alpha- and beta-coronaviruses, including SARS-CoV-2. The coronaviruses SARS-CoV, SARS-CoV-2, human coronavirus 229E, murine hepatitis virus-1, or MERS-CoV were deposited on prototypic HITES or spiked into liquid matrices along with organic soil loads. Alcohol-, quaternary ammonium compound-, hydrochloric acid-, organic acid-, p-chloro-m-xylenol-, and sodium hypochlorite-based microbicidal formulations were evaluated per ASTM International and EN standard methodologies. All evaluated formulated microbicides inactivated SARS-CoV-2 and other coronaviruses in suspension or on prototypic HITES. Virucidal efficacies (≥ 3 to ≥ 6 log10 reduction) were displayed within 30 s to 5 min. The virucidal efficacy of a variety of commercially available formulated microbicides against SARS-CoV-2 and other coronaviruses was confirmed. These microbicides should be useful for targeted surface and hand hygiene and disinfection of liquids, as part of infection prevention and control for SARS-CoV-2 and emerging mutational variants, and other emerging enveloped viruses.


Assuntos
Alphacoronavirus , Anti-Infecciosos , SARS-CoV-2 , Animais , Meia-Vida , Humanos , Testes de Sensibilidade Microbiana , Suínos
19.
J Food Prot ; 73(1): 92-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20051210

RESUMO

Cinnamic acid (CA), a naturally occurring organic acid found in fruits and spices, has antimicrobial activity against spoilage and pathogenic bacteria, but low aqueous solubility limits its use. The purpose of this study was to determine the effectiveness of solubility-enhancing alpha-cyclodextrin-CA inclusion complexes against Escherichia coli O157:H7 and Salmonella enterica serovars suspended in apple cider or orange juice at two different incubation temperatures (4 and 26 degrees Celsius). Two concentrations (400 and 1,000 mg/liter) of alpha-cyclodextrin-CA inclusion complex were aseptically added to apple cider inoculated with E. coli O157:H7 (7 log CFU/ml) and orange juice inoculated with a cocktail of six Salmonella enterica serovars (7 log CFU/ml). Samples were extracted at 0 min, at 2 min, and at 24-h intervals for 7 days, serially diluted in 0.1 % peptone, spread plated in duplicate onto tryptic soy agar, and incubated at 35 degrees Celsius for 24 h. Populations of E. coli O157:H7 in apple cider were significantly reduced (P < or = 0.05) during the 7-day sampling period in all solutions regardless of temperature. Compared with the controls, populations were significantly reduced by the addition of 400 and 1,000 mg/liter inclusion complex, but reductions were not significantly different (P > or = 0.05) between the two treatment groups (400 and 1,000 mg/liter). Salmonella was significantly reduced in all solutions regardless of temperature. There were significant differences between the control and each inclusion complex concentration at 4 and 26 degrees Celsius. Coupled with additional processing steps, alpha-cyclodextrin-CA inclusion complexes may provide an alternative to traditional heat processes.


Assuntos
Cinamatos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Conservação de Alimentos/métodos , Frutas/microbiologia , Salmonella enterica/efeitos dos fármacos , alfa-Ciclodextrinas/farmacologia , Antibacterianos/farmacologia , Bebidas/análise , Bebidas/microbiologia , Citrus sinensis/microbiologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Malus/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Temperatura , Fatores de Tempo
20.
J Food Prot ; 72(10): 2144-50, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19833038

RESUMO

The purpose of this research was to establish the dose of UV light (253.7 nm) needed to inactivate Listeria monocytogenes in distilled water, fresh brine (9% NaCl), spent brine, and diluted (5, 35, and 55%) spent brine, using uridine as a chemical actinometer. Strains N1-227 (isolated from hot dog batter), N3-031 (isolated from turkey franks), and R2-499 (isolated from meat) were mixed in equal proportions and suspended in each solution prepared so as to contain 10(-4) M uridine. Samples were irradiated in sterile quartz cells for 0, 5, 10, 15, 20, 25, or 30 min. Inactivation was evaluated by serially diluting samples in 0.1% peptone, by surface plating in duplicate onto modified Oxford agar and Trypticase soy agar with yeast extract, and by enrichment in brain heart infusion broth, followed by incubation at 37 degrees C for 24 to 48 h. For dose measurements, the absorbance (262 nm) was measured before and after irradiation. Differences were observed in population estimates depending on the solution (P < or = 0.05). Reductions were as follows from greatest to least: water > fresh brine > 5% spent brine > 35% spent brine > 55% spent brine > undiluted spent brine. UV light did not significantly reduce populations suspended in spent brine solutions. L. monocytogenes decreased to below the detection limit (1 log CFU/ml) at doses greater than 33.2 mJ/cm(2) in water and at doses greater than 10.3 mJ/cm(2) in fresh brine. Knowledge of UV dosing required to control L. monocytogenes in brines similar to those used for ready-to-eat meat processing will aid manufacturers in establishing appropriate food safety interventions for these products.


Assuntos
Irradiação de Alimentos , Listeria monocytogenes/efeitos da radiação , Produtos da Carne/microbiologia , Sais/farmacologia , Raios Ultravioleta , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Contaminação de Alimentos/análise , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Temperatura , Fatores de Tempo , Uridina/farmacologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA