Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(3): 507-521.e18, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28735753

RESUMO

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.


Assuntos
Fragilidade Cromossômica , Quebras de DNA de Cadeia Dupla , Neoplasias/genética , Animais , Linfócitos B/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Repressoras/metabolismo
2.
Mol Cell ; 81(12): 2611-2624.e10, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33857404

RESUMO

The Shieldin complex shields double-strand DNA breaks (DSBs) from nucleolytic resection. Curiously, the penultimate Shieldin component, SHLD1, is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1, and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1, thereby ensuring a proper balance between end protection and resection during DSB repair. The loss of THAP1-dependent SHLD1 expression confers cross-resistance to poly (ADP-ribose) polymerase (PARP) inhibitor and cisplatin in BRCA1-deficient cells and shorter progression-free survival in ovarian cancer patients. Moreover, the embryonic lethality and PARPi sensitivity of BRCA1-deficient mice is rescued by ablation of SHLD1. Our study uncovers a transcriptional network that directly controls DSB repair choice and suggests a potential link between DNA damage and pathogenic THAP1 mutations, found in patients with the neurodevelopmental movement disorder adult-onset torsion dystonia type 6.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA/genética , Distonia/genética , Feminino , Fator C1 de Célula Hospedeira/metabolismo , Proteínas Mad2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição YY1/metabolismo
3.
Mol Cell ; 77(1): 26-38.e7, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31653568

RESUMO

53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.


Assuntos
Recombinação Homóloga/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Proteína BRCA1/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Recombinação Homóloga/efeitos dos fármacos , Camundongos , Mutação/efeitos dos fármacos , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/genética , Ubiquitina-Proteína Ligases/genética
4.
Genes Dev ; 31(12): 1180-1194, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765160

RESUMO

Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease.


Assuntos
Dano ao DNA , Instabilidade Genômica , Doenças do Sistema Nervoso/genética , Sistema Nervoso/fisiopatologia , Reparo do DNA , Humanos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/prevenção & controle
5.
Mol Cancer ; 23(1): 123, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849845

RESUMO

BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-met , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Modelos Animais de Doenças , Criança , Gradação de Tumores , Anilidas/farmacologia , Imidazóis , Triazinas
6.
J Cell Mol Med ; 27(18): 2770-2781, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37593885

RESUMO

Glioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. While surgical resection is the primary treatment, adjuvant temozolomide (TMZ) chemotherapy and radiotherapy only provide slight improvement in disease course and outcome. Unfortunately, most treated patients experience recurrence of highly aggressive, therapy-resistant tumours and eventually succumb to the disease. To increase chemosensitivity and overcome therapy resistance, we have modified the chemical structure of the PFI-3 bromodomain inhibitor of the BRG1 and BRM catalytic subunits of the SWI/SNF chromatin remodelling complex. Our modifications resulted in compounds that sensitized GBM to the DNA alkylating agent TMZ and the radiomimetic bleomycin. We screened these chemical analogues using a cell death ELISA with GBM cell lines and a cellular thermal shift assay using epitope tagged BRG1 or BRM bromodomains expressed in GBM cells. An active analogue, IV-129, was then identified and further modified, resulting in new generation of bromodomain inhibitors with distinct properties. IV-255 and IV-275 had higher bioactivity than IV-129, with IV-255 selectively binding to the bromodomain of BRG1 and not BRM, while IV-275 bound well to both BRG1 and BRM bromodomains. In contrast, IV-191 did not bind to either bromodomain or alter GBM chemosensitivity. Importantly, both IV-255 and IV-275 markedly increased the extent of DNA damage induced by TMZ and bleomycin as determined by nuclear γH2AX staining. Our results demonstrate that these next-generation inhibitors selectively bind to the bromodomains of catalytic subunits of the SWI/SNF complex and sensitize GBM to the anticancer effects of TMZ and bleomycin. This approach holds promise for improving the treatment of GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Domínios Proteicos , Temozolomida/farmacologia , Morte Celular , Bleomicina/farmacologia , Dano ao DNA
7.
Neuropathol Appl Neurobiol ; 49(4): e12915, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37296499

RESUMO

AIMS: Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder caused by hypomorphic mutations of NBS1. NBS1 is a member of the MRE11-RAD50-NBS1 (MRN) complex that binds to DNA double-strand breaks and activates the DNA damage response (DDR). Nbs1 inactivation in neural progenitor cells leads to microcephaly and premature death. Interestingly, p53 homozygous deletion rescues the NBS1-deficient phenotype allowing long-term survival. The objective of this work was to determine whether simultaneous inactivation of Nbs1 and p53 in neural progenitors triggered brain tumorigenesis and if so in which category this tumour could be classified. METHODS: We generated a mouse model with simultaneous genetic inactivation of Nbs1 and p53 in embryonic neural stem cells and analysed the arising tumours with in-depth molecular analyses including immunohistochemistry, array comparative genomic hybridisation (aCGH), whole exome-sequencing and RNA-sequencing. RESULTS: NBS1/P53-deficient mice develop high-grade gliomas (HGG) arising in the olfactory bulbs and in the cortex along the rostral migratory stream. In-depth molecular analyses using immunohistochemistry, aCGH, whole exome-sequencing and RNA-sequencing revealed striking similarities to paediatric human HGG with shared features with radiation-induced gliomas (RIGs). CONCLUSIONS: Our findings show that concomitant inactivation of Nbs1 and p53 in mice promotes HGG with RIG features. This model could be useful for preclinical studies to improve the prognosis of these deadly tumours, but it also highlights the singularity of NBS1 among the other DNA damage response proteins in the aetiology of brain tumours.


Assuntos
Glioma , Proteína Supressora de Tumor p53 , Animais , Criança , Humanos , Camundongos , Proteínas de Ciclo Celular/genética , Glioma/genética , Homozigoto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Deleção de Sequência , Proteína Supressora de Tumor p53/genética
8.
EMBO Rep ; 22(5): e51851, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33932076

RESUMO

Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.


Assuntos
Cálcio , Proteínas de Ligação a DNA , Animais , DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Neurônios/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Convulsões/genética
9.
Nature ; 541(7635): 87-91, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002403

RESUMO

XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease.


Assuntos
Ataxia Cerebelar/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Adenosina Difosfato Ribose/metabolismo , Alelos , Animais , Apraxias/congênito , Apraxias/genética , Ataxia/genética , Axônios/patologia , Ataxia Cerebelar/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cromatina/metabolismo , Síndrome de Cogan/genética , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Feminino , Humanos , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Linhagem , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
10.
Nat Rev Neurosci ; 17(11): 673-679, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27630045

RESUMO

Topoisomerases are unique enzymes that regulate torsional stress in DNA to enable essential genome functions, including DNA replication and transcription. Although all cells in an organism require topoisomerases to maintain normal function, the nervous system in particular shows a vital need for these enzymes. Indeed, a range of inherited human neurologic syndromes, including neurodegeneration, schizophrenia and intellectual impairment, are associated with aberrant topoisomerase function. Much remains unknown regarding the tissue-specific function of neural topoisomerases or the connections between these enzymes and disease aetiology. Precisely how topoisomerases regulate genome dynamics within the nervous system is therefore a crucial research question.


Assuntos
Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , DNA Topoisomerases/metabolismo , Doenças do Sistema Nervoso/metabolismo , Neurônios/fisiologia , Animais , DNA Topoisomerases/genética , Humanos , Doenças do Sistema Nervoso/genética , Transcrição Gênica/fisiologia
11.
Proc Natl Acad Sci U S A ; 115(52): E12285-E12294, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30538199

RESUMO

Frequent oxidative modification of the neural genome is a by-product of the high oxygen consumption of the nervous system. Rapid correction of oxidative DNA lesions is essential, as genome stability is a paramount determinant of neural homeostasis. Apurinic/apyrimidinic endonuclease 1 (APE1; also known as "APEX1" or "REF1") is a key enzyme for the repair of oxidative DNA damage, although the specific role(s) for this enzyme in the development and maintenance of the nervous system is largely unknown. Here, using conditional inactivation of murine Ape1, we identify critical roles for this protein in the brain selectively after birth, coinciding with tissue oxygenation shifting from a placental supply to respiration. While mice lacking APE1 throughout neurogenesis were viable with little discernible phenotype at birth, rapid and pronounced brain-wide degenerative changes associated with DNA damage were observed immediately after birth leading to early death. Unexpectedly, Ape1Nes-cre mice appeared hypothermic with persistent shivering associated with the loss of thermoregulatory serotonergic neurons. We found that APE1 is critical for the selective regulation of Fos1-induced hippocampal immediate early gene expression. Finally, loss of APE1 in combination with p53 inactivation resulted in a profound susceptibility to brain tumors, including medulloblastoma and glioblastoma, implicating oxidative DNA lesions as an etiologic agent in these diseases. Our study reveals APE1 as a major suppressor of deleterious oxidative DNA damage and uncovers specific and broad pathogenic consequences of respiratory oxygenation in the postnatal nervous system.


Assuntos
Regulação da Temperatura Corporal , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Homeostase , Animais , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Feminino , Genoma , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurogênese , Estresse Oxidativo , Neurônios Serotoninérgicos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Stem Cells ; 37(9): 1238-1248, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145830

RESUMO

Continuous growth of the mouse incisor teeth is due to the life-long maintenance of epithelial stem cells (SCs) in their niche called cervical loop (CL). Several signaling factors regulate SC maintenance and/or their differentiation to achieve organ homeostasis. Previous studies indicated that Hedgehog signaling is crucial for both the maintenance of the SCs in the niche, as well as for their differentiation. How Hedgehog signaling regulates these two opposing cellular behaviors within the confinement of the CL remains elusive. In this study, we used in vitro organ and cell cultures to pharmacologically attenuate Hedgehog signaling. We analyzed expression of various genes expressed in the SC niche to determine the effect of altered Hedgehog signaling on the cellular hierarchy within the niche. These genes include markers of SCs (Sox2 and Lgr5) and transit-amplifying cells (P-cadherin, Sonic Hedgehog, and Yap). Our results show that Hedgehog signaling is a critical survival factor for SCs in the niche, and that the architecture and the diversity of the SC niche are regulated by multiple Hedgehog ligands. We demonstrated the presence of an additional Hedgehog ligand, nerve-derived Desert Hedgehog, secreted in the proximity of the CL. In addition, we provide evidence that Hedgehog receptors Ptch1 and Ptch2 elicit independent responses, which enable multimodal Hedgehog signaling to simultaneously regulate SC maintenance and differentiation. Our study indicates that the cellular hierarchy in the continuously growing incisor is a result of complex interplay of two Hedgehog ligands with functionally distinct Ptch receptors. Stem Cells 2019;37:1238-1248.


Assuntos
Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Receptor Patched-2/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Proteínas Hedgehog/genética , Incisivo/citologia , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Receptor Patched-1/genética , Receptor Patched-2/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia
13.
Mutagenesis ; 35(1): 27-38, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31816044

RESUMO

DNA is susceptible to a range of chemical modifications, with one of the most frequent lesions being apurinic/apyrimidinic (AP) sites. AP sites arise due to damage-induced (e.g. alkylation) or spontaneous hydrolysis of the N-glycosidic bond that links the base to the sugar moiety of the phosphodiester backbone, or through the enzymatic activity of DNA glycosylases, which release inappropriate bases as part of the base excision repair (BER) response. Unrepaired AP sites, which lack instructional information, have the potential to cause mutagenesis or to arrest progressing DNA or RNA polymerases, potentially causing outcomes such as cellular transformation, senescence or death. The predominant enzyme in humans responsible for repairing AP lesions is AP endonuclease 1 (APE1). Besides being a powerful AP endonuclease, APE1 possesses additional DNA repair activities, such as 3'-5' exonuclease, 3'-phophodiesterase and nucleotide incision repair. In addition, APE1 has been shown to stimulate the DNA-binding activity of a number of transcription factors through its 'REF1' function, thereby regulating gene expression. In this article, we review the structural and biochemical features of this multifunctional protein, while reporting on new structures of the APE1 variants Cys65Ala and Lys98Ala. Using a functional complementation approach, we also describe the importance of the repair and REF1 activities in promoting cell survival, including the proposed passing-the-baton coordination in BER. Finally, results are presented indicating a critical role for APE1 nuclease activities in resistance to the genotoxins methyl methanesulphonate and bleomycin, supporting biologically important functions as an AP endonuclease and 3'-phosphodiesterase, respectively.


Assuntos
Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Mutagênicos/metabolismo , Sobrevivência Celular/fisiologia , DNA/metabolismo , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Diester Fosfórico Hidrolases/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(47): 12536-12541, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114052

RESUMO

Meiotic synapsis and recombination between homologs permits the formation of cross-overs that are essential for generating chromosomally balanced sperm and eggs. In mammals, surveillance mechanisms eliminate meiotic cells with defective synapsis, thereby minimizing transmission of aneuploidy. One such surveillance mechanism is meiotic silencing, the inactivation of genes located on asynapsed chromosomes, via ATR-dependent serine-139 phosphorylation of histone H2AFX (γH2AFX). Stimulation of ATR activity requires direct interaction with an ATR activation domain (AAD)-containing partner. However, which partner facilitates the meiotic silencing properties of ATR is unknown. Focusing on the best-characterized example of meiotic silencing, meiotic sex chromosome inactivation, we reveal this AAD-containing partner to be the DNA damage and checkpoint protein TOPBP1. Conditional TOPBP1 deletion during pachynema causes germ cell elimination associated with defective X chromosome gene silencing and sex chromosome condensation. TOPBP1 is essential for localization to the X chromosome of silencing "sensors," including BRCA1, and effectors, including ATR, γH2AFX, and canonical repressive histone marks. We present evidence that persistent DNA double-strand breaks act as silencing initiation sites. Our study identifies TOPBP1 as a critical factor in meiotic sex chromosome silencing.


Assuntos
Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla , Cromossomos Sexuais/química , Espermatogênese/genética , Inativação do Cromossomo X , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1 , Proteínas de Transporte/metabolismo , Pareamento Cromossômico , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Cromossomos Sexuais/metabolismo , Espermátides/citologia , Espermátides/crescimento & desenvolvimento , Espermátides/metabolismo , Espermatócitos/citologia , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Espermatogônias/citologia , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/metabolismo , Espermatozoides/citologia , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
EMBO J ; 34(19): 2465-80, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26290337

RESUMO

Polynucleotide kinase-phosphatase (PNKP) is a DNA repair factor possessing both 5'-kinase and 3'-phosphatase activities to modify ends of a DNA break prior to ligation. Recently, decreased PNKP levels were identified as the cause of severe neuropathology present in the human microcephaly with seizures (MCSZ) syndrome. Utilizing novel murine Pnkp alleles that attenuate expression and a T424GfsX48 frame-shift allele identified in MCSZ individuals, we determined how PNKP inactivation impacts neurogenesis. Mice with PNKP inactivation in neural progenitors manifest neurodevelopmental abnormalities and postnatal death. This severe phenotype involved defective base excision repair and non-homologous end-joining, pathways required for repair of both DNA single- and double-strand breaks. Although mice homozygous for the T424GfsX48 allele were lethal embryonically, attenuated PNKP levels (akin to MCSZ) showed general neurodevelopmental defects, including microcephaly, indicating a critical developmental PNKP threshold. Directed postnatal neural inactivation of PNKP affected specific subpopulations including oligodendrocytes, indicating a broad requirement for genome maintenance, both during and after neurogenesis. These data illuminate the basis for selective neural vulnerability in DNA repair deficiency disease.


Assuntos
Reparo do DNA , Mutação da Fase de Leitura , Instabilidade Genômica , Células-Tronco Neurais/enzimologia , Oligodendroglia/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Humanos , Camundongos , Camundongos Mutantes , Microcefalia/enzimologia , Microcefalia/genética , Microcefalia/patologia , Células-Tronco Neurais/patologia , Oligodendroglia/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética
16.
J Neurosci ; 37(4): 893-905, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123024

RESUMO

The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G2/M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. SIGNIFICANCE STATEMENT: The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system.


Assuntos
Dano ao DNA/fisiologia , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Genoma/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/genética
17.
Hum Mol Genet ; 24(3): 828-40, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274775

RESUMO

Aprataxin (APTX) deficiency causes progressive cerebellar degeneration, ataxia and oculomotor apraxia in man. Cell free assays and crystal structure studies demonstrate a role for APTX in resolving 5'-adenylated nucleic acid breaks, however, APTX function in vertebrates remains unclear due to the lack of an appropriate model system. Here, we generated a murine model in which a pathogenic mutant of superoxide dismutase 1 (SOD1(G93A)) is expressed in an Aptx-/- mouse strain. We report a delayed population doubling and accelerated senescence in Aptx-/- primary mouse fibroblasts, which is not due to detectable telomere instability or cell cycle deregulation but is associated with a reduction in transcription recovery following oxidative stress. Expression of SOD1(G93A) uncovers a survival defect ex vivo in cultured cells and in vivo in tissues lacking Aptx. The surviving neurons feature numerous and deep nuclear envelope invaginations, a hallmark of cellular stress. Furthermore, they possess an elevated number of high-density nuclear regions and a concomitant increase in histone H3 K9 trimethylation, hallmarks of silenced chromatin. Finally, the accelerated cellular senescence was also observed at the organismal level as shown by down-regulation of insulin-like growth factor 1 (IGF-1), a hallmark of premature ageing. Together, this study demonstrates a protective role of Aptx in vivo and suggests that its loss results in progressive accumulation of DNA breaks in the nervous system, triggering hallmarks of premature ageing, systemically.


Assuntos
Senilidade Prematura/metabolismo , Proteínas de Ligação a DNA/deficiência , Neurônios Motores/patologia , Proteínas Nucleares/deficiência , Superóxido Dismutase/genética , Transcrição Gênica/efeitos dos fármacos , Senilidade Prematura/genética , Senilidade Prematura/patologia , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Mutação , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
18.
Breast Cancer Res Treat ; 166(3): 725-741, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28849346

RESUMO

PURPOSE: ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. METHODS: SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. RESULTS: SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed AtmΔ/Δ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in AtmΔ/Δ dams. CONCLUSIONS: We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.


Assuntos
Neoplasias da Mama/genética , Superóxido Dismutase/genética , Fator de Transcrição RelA/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Integrases/genética , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Estresse Oxidativo/genética
19.
Am J Pathol ; 186(7): 1939-1951, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181404

RESUMO

Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Células-Tronco Neurais/patologia , eIF-2 Quinase/metabolismo , Adulto , Animais , Apoptose , Western Blotting , Carcinogênese/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Cerebelares/enzimologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Ativação Enzimática/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Lactente , Masculino , Meduloblastoma/enzimologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/patologia , Reação em Cadeia da Polimerase em Tempo Real
20.
Nature ; 471(7337): 240-4, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21390131

RESUMO

DNA replication and repair in mammalian cells involves three distinct DNA ligases: ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4). Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway. Lig3 is also present in the mitochondria, where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc1 (ref. 4). However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart-pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but acted in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.


Assuntos
Núcleo Celular/genética , DNA Ligases/metabolismo , Reparo do DNA , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Animais , Ataxia/patologia , Ataxia/fisiopatologia , Biocatálise , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , DNA Ligase Dependente de ATP , DNA Ligases/deficiência , DNA Ligases/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Genes Essenciais , Coração/fisiologia , Coração/fisiopatologia , Interneurônios/enzimologia , Interneurônios/patologia , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Sistema Nervoso/enzimologia , Sistema Nervoso/patologia , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA