Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861223

RESUMO

The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.

2.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36591874

RESUMO

There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.

3.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558074

RESUMO

Degradation of the mycobacterial complex containing mycolic acids (MAs) by natural bioactive compounds is essential for producing safe and value-added foods with therapeutic activities. This study aimed to determine the degradation efficiency of natural organic acid extracts (i.e., citric, malic, tartaric, and lactic), quadri-mix extract from fruits and probiotics (i.e., lemon, apple, grape, and cell-free supernatant of Lactobacillus acidophilus), and synthetic pure organic acids (i.e., citric, malic, tartaric, and lactic), against MA in vitro in phosphate buffer solution (PBS) and Karish cheese models. The degradation effect was evaluated both individually and in combinations at different concentrations of degradants (1, 1.5, and 2%) and at various time intervals (0, 6, 12, 24, and 48 h). The results show that MA degradation percentage recorded its highest value at 2% of mixed fruit extract quadri-mix with L. acidophilus and reached 99.2% after 48 h both in PBS and Karish cheese, unlike other treatments (i.e., citric + malic + tartaric + lactic), individual acids, and sole extracts at all concentrations. Conversely, organic acid quadri-mix revealed the greatest MA degradation% of 95.9, 96.8, and 97.3% at 1, 1.5, and 2%, respectively, after 48 h. Citric acid was more effective in MA degradation than other acids. The fruit extract quadri-mix combined with L. acidophilus-fortified Karish cheese showed the highest sensorial characteristics; hence, it can be considered a novel food-grade degradant for MA and could be a promising biocontrol candidate against Mycobacterium tuberculosis (Mtb) in food matrices.


Assuntos
Queijo , Mycobacterium , Probióticos , Ácidos Micólicos , Queijo/microbiologia , Lactobacillus acidophilus , Ácidos/metabolismo , Probióticos/metabolismo
4.
Front Nutr ; 10: 1186469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229469

RESUMO

Introduction: Spray-dried yogurt powder (SDYP) has shelf stability and other functional properties that improve solubility and facilitate the use, processing, packaging, and transportation of other food derivatives, such as bread and pastries on a large scale. The present research was conducted to develop SDYP and further its utilization to prepare functional cookies. Methods: Yogurt was spray-dried by employing different outlet air temperatures (OAT) (65°C, 70°C & 75°C) and inlet air temperature (IAT) (150°C, 155°C & 160°C). Spray drying shows that increasing the temperature increases nutritional loss, whereas S. thermophilus culture shows resistance to the intensive heat approaches. On the other hand L. delbrueckii subsp. Bulgaricus culture was found to be significantly affected. A total of 4 treatments, including one control for the functional cookies development. Results and discussion: A directly proportional relation was investigated between the increasing concentration of SDYP and baking characteristics and cookie's mineral and protein profile. Bioactive parameters like antioxidant activity of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and total phenolic content (TPC) were also affected significantly. The sensory profile shows an incline towards T0 (0% SDYP) to T3 (10% SDYP) in all attributes but starts to decline when the concentration of SDYP reaches 15%. This study suggests that by employing a certain combination of temperatures (OAT: 60°C IAT: 150°C); maximum survival of inoculated culture can be achieved, and this powder can be utilized in the development of functional cookies with enhanced sensory as well as biochemical characteristics significantly (P< 0.05).

5.
Pathogens ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513805

RESUMO

Campylobacter jejuni is a Gram-negative bacterium which is considered as the most reported cause of foodborne infection, especially for poultry species. The object of this work is to evaluate the occurrence of C. jejuni in chicken meat as well its control via three types of sorghum extracts (white sorghum (WS), yellow sorghum (YS), and red sorghum (RS)); antibacterial activity, antioxidant power, and cytotoxicity of sorghum extracts were also assessed. It was found that C. jejuni is very abundant in chicken meat, especially breast and thigh. WS extract showed more effectiveness than both yellow and red ones. Lyophilized WS extract offered high total phenolic compounds (TPCs) and total flavonoid compounds (TFCs) of 64.2 ± 0.8 mg gallic acid equivalent (GAE/g) and 33.9 ± 0.4 mg catechol equivalent (CE)/g, respectively. Concerning the antibacterial and antioxidant activities, WS showed high and significant antibacterial activity (p < 0.001); hence, WS displayed a minimum inhibitory concentration (MIC) of 6.25%, and revealed an inhibition zone of 7.8 ± 0.3 mm; it also showed an IC50 at a concentration of 34.6 µg/mL. In our study, different samples of chicken fillet were collected and inoculated with pathogenic C. jejuni and stored at 4 °C. Inoculated samples were treated with lyophilized WS extract at (2%, 4%, and 6%), the 2% treatment showed a full reduction in C. jejuni on the 10th day, the 4% treatment showed a full reduction in C. jejuni on the 8th day, while the 6% treatment showed a full reduction in C. jejuni on the 6th day. Additionally, 2%, 4%, and 6% WS extracts were applied on un-inoculated grilled chicken fillet, which enhanced its sensory attributes. In sum, WS extract is a promising natural preservative for chicken meat with accepted sensory evaluation results thanks to its high antibacterial and antioxidant potentials.

6.
Foods ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048287

RESUMO

This study aims to detect Clostridium botulinum and its control using natural leaf extracts of Citrus limon, Citrus sinensis, and Citrus unshiu in Egyptian fish products, e.g., canned tuna, canned sardine, canned mackerel, fesikh, moloha, and renga, as well the application of C. limon in tuna. Moreover, the antibacterial activity of the C. limon leaf extract was also estimated. In the water extract, ascorbic acid, total flavonoid content (TFC), and total phenolic content (TPC) were determined by volumetric, aluminum chloride, and Folin-Ciocalteu approaches, respectively. The antioxidant ability of the extract was analyzed in vitro via free radical scavenging (DPPH) and Ferric reducing assays. The results showed variability in the distribution of the total number of positive C. botulinum in fish samples from three different governorates under study, which were (24) Alexandria, (16) Beheira, and (17) Gharbia, out of the 120 tested samples in each governorate. Additionally, the findings revealed that all three Citrus extracts contain an appropriate number of secondary metabolites, with a sustainable presence of saponin and tannins in the C. limon extract. Furthermore, all Citrus extracts inhibited bacterial growth by increasing the inhibition zone, with C. limon being the best extract (25 mm) compared to C. sinensis and C. unshiu. The overall results showed the high antioxidant and anti-Clostridium powers (p < 0.05) of C. limon leaf extract, indicating its preservative activity in fishery products during storage. Finally, C. limon leaf extract can fight off C. botulinum and is considered a promising natural preservation candidate in ensuring safe and fresh fishery products.

7.
Foods ; 12(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37685214

RESUMO

Padina pavonica, Hormophysa cuneiformis, and Corallina officinalis are three types of algae that are assumed to be used as antibacterial agents. Our study's goal was to look into algal extracts' potential to be used as food preservative agents and to evaluate their ability to inhibit pathogenic bacteria in several meat products (pastirma, beef burger, luncheon, minced meat, and kofta) from the local markets in Alexandria, Egypt. By testing their antibacterial activity, results demonstrated that Padina pavonica showed the highest antibacterial activity towards Bacillus cereus, Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Salmonella spp., and Klebsiella pneumoniae. Padina pavonica extract also possesses most phenolic and flavonoid content overall. It has 24 mg gallic acid equivalent/g and 7.04 mg catechol equivalent/g, respectively. Moreover, the algae extracts were tested for their antioxidant activity, and the findings were measured using ascorbic acid as a benchmark. The IC50 of ascorbic acid was found to be 25.09 µg/mL, while Padina pavonica exhibited an IC50 value of 267.49 µg/mL, Corallina officinalis 305.01 µg/mL, and Hormophysa cuneiformis 325.23 µg/mL. In this study, Padina pavonica extract was utilized in three different concentrations (Treatment 1 g/100 g, Treatment 2 g/100 g, and Treatment 3 g/100 g) on beef burger as a model. The results showed that as the concentration of the extract increased, the bacterial inhibition increased over time. Bacillus cereus was found to be the most susceptible to the extract, while Streptococcus pyogenes was the least. In addition, Padina pavonica was confirmed to be a safe compound through cytotoxicity testing. After conducting a sensory evaluation test, it was confirmed that Padina pavonica in meat products proved to be a satisfactory product.

8.
Toxins (Basel) ; 15(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36828421

RESUMO

The existence of aflatoxin M1 (AFM1) in raw milk results in economic losses and public health risks. This research aims to examine the capability of bentonite to adsorb and/or eliminate AFM1 from various raw milk types. In addition, the effects of numerous bentonites (HAFR 1, 2, 3 and 4) on the nutritional characteristics of the milk were studied. Our findings revealed that goat milk had the highest value of AFM1 (490.30 ng/L) in comparison to other milks. AFM1 adsorption was influenced by applying bentonite (0.5 and 1 g) in a concentration-dependent manner for different time intervals (from 0 to 12 h). The percentage of AFM1 reached the maximum adsorption level after 12 h to 100, 98.5 and 98% for bentonites HAFR 3, 1 and 2, respectively. HAFR 3 (1 g bentonite) presented higher adsorption efficiency than other bentonites used in the phosphate buffer saline (PBS) and milk. Residual levels of AFM1 reached their lowest values of 0 and 1.5 ng/L while using HAFR 3 in PBS and milk, respectively. With regard to the influence of bentonite on the nutritional characteristics of milk, there was an increase in fat, protein and solid non-fat ratio while using HAFR 3 and 4, yet decreased lactose in comparison with the control. Scanning Electron Microscopy and Fourier Transform-Infrared Spectroscopy both identified bentonites as superior AFM1 binders. The results demonstrated that bentonite, particularly HAFR 3, was the most effective adsorbent and could thus be a promising candidate for the decontamination of AFM1 in milk.


Assuntos
Aflatoxina M1 , Leite , Animais , Leite/química , Aflatoxina M1/análise , Bentonita/metabolismo , Adsorção , Contaminação de Alimentos/análise
9.
Foods ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613239

RESUMO

This study aims to assess the occurrence of Staphylococcus aureus in chicken fillets and to control its growth using various lyophilized seaweed extracts (i.e., Halimeda opuntia (HO), Actinotrichia fragilis, and Turbinaria turbinata) by an agar disk diffusion assay in vitro. Results showed that prevalence of S. aureus in breast and thigh samples reached of 92% and 84%, respectively. Lyophilized HO extract was the only seaweed that showed the antibacterial activity against S aureus with a significant difference at p < 0.05. The minimum inhibitory concentration (MIC) of HO extract was 1.5%, with an inhibition zone of 8.16 ± 0.73 mm. Regarding 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, IC50 was recorded at 55.36 µg/mL, whereas cytotoxic IC50 of the lyophilized HO extract on peripheral blood mononuclear cells (PBMCs) was 33.7 µg/mL; a higher IC50 of HO extracts permits their use as a safe food additive in meat products. Moreover, total phenolic compounds and total flavonoids compounds recorded 20.36 ± 0.092 and 16.59 ± 0.029 mg/mL, respectively. HPLC analyses of phenolic compounds profiles exhibited many bioactive substances and the higher ratio was daidzein with 10.84 ± 0.005 µg/mL and followed by gallic acid with a value of 4.06 ± 0.006 µg/mL. In a challenge study, chicken fillet (CHF) experimentally inoculated with S. aureus (ST) and treated with the lyophilized HO algal extract at 4% and 6% (CHF/ST/HO) showed a complete reduction of S. aureus count on the 6th and 4th days in chicken fillet stored at 4 °C, respectively. Moreover, CHF/ST/HO at 4% and 6% of HO extract enhanced the sensory attributes of grilled un-inoculated chicken fillet. Thus, lyophilized HO extracts are promising antibacterial and antioxidant candidates in the chicken meat industry.

10.
Food Res Int ; 161: 111793, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192882

RESUMO

The aim of this study is to bio-monitor the levels of 16 polycyclic aromatic hydrocarbons (PAHs) in cold smoked beef and sausages. The ability of probiotics to remove PAHs was also investigated as function of the cell viability (viable, non-viable and acid-treated cells), bacterial counts (107, 108, and 109 CFU/mL), pH (3, 5, and 7), and incubation time (6, 12, and 24 h). The results indicated a significant difference (p < 0.05) among the analyzed sausages and beef samples for the PAHs concentration. Non-viable probiotics achieved the highest PAHs reduction rates. Limosilactobacillus fermentum EMCC 1346 presented the lowest binding activity value (i.e. 41.10-56.80 %) for all PAHs, followed by Lacticaseibacillus rhamnosus EMCC 1105 with binding percentage of 50.40-65.80 %. On the other hand, the highest removal for all PAHs was achieved by Lactobacillus bulgaricus EMCC 1102 with binding rate of 60.50-76.80 %, at 109 CFU/mL, pH 7, after incubation for 24 h. The fortified sausages results revealed that L. bulgaricus EMCC 1102 cultures exhibited the maximum and significant reduction (p < 0.05) of PAHs with values of 44.71 µg/kg for the center part, compared to control non treated sausages (82.65 µg/kg). Regarding the sensorial profile, treated samples with probiotics led to a preference from the panelists, compared to control. Consequently, the results confirm that fermented probiotic suspension is a feasible future strategy to control PAHs levels in cold smoked meat stuffs.


Assuntos
Limosilactobacillus fermentum , Produtos da Carne , Hidrocarbonetos Policíclicos Aromáticos , Probióticos , Animais , Bovinos , Produtos da Carne/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Probióticos/metabolismo , Fumaça
11.
Toxins (Basel) ; 15(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36668841

RESUMO

The high incidence of aflatoxins (AFs) in chocolates suggests the necessity to create a practical and cost-effective processing strategy for eliminating mycotoxins. The present study aimed to assess the adsorption abilities of activated charcoal (A. charcoal), yeast (Saccharomyces cerevisiae), and the probiotic Lactobacillus rhamnosus as AFs adsorbents in three forms-sole, di- and tri-mix-in phosphate-buffered saline (PBS) through an in vitro approach, simulated to mimic the conditions present in the gastrointestinal tract (GIT) based on pH, time and AFs concentration. In addition, the novel fortification of chocolate with A. charcoal, probiotic, and yeast (tri-mix adsorbents) was evaluated for its effects on the sensory properties. Using HPLC, 60 samples of dark, milk, bitter, couverture, powder, and wafer chocolates were examined for the presence of AFs. Results showed that all the examined samples contained AFs, with maximum concentrations of 2.32, 1.81, and 1.66 µg/kg for powder, milk, and dark chocolates, respectively. The combined treatment demonstrated the highest adsorption efficiency (96.8%) among all tested compounds. Scanning electron microscope (SEM) analysis revealed the tested adsorbents to be effective AF-binding agents. Moreover, the novel combination of tri-mix fortified chocolate had a minor cytotoxicity impact on the adsorptive abilities, with the highest binding at pH 6.8 for 4 h, in addition to inducing an insignificant effect on the sensory attributes of dark chocolate. Tri-mix is thus recommended in the manufacturing of dark chocolate in order to enhance the safety of the newly developed product.


Assuntos
Aflatoxinas , Cacau , Chocolate , Lacticaseibacillus rhamnosus , Chocolate/análise , Saccharomyces cerevisiae , Aflatoxinas/análise , Carvão Vegetal/farmacologia , Pós , Alérgenos
12.
Food Biosci ; 40: 100891, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33495727

RESUMO

Currently, antiviral drugs and/or vaccines are not yet available to treat or prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we narrated the available data, from credible publishers, regarding the possible role of polyphenols and natural extracts-containing polyphenols in the prevention of coronavirus disease 2019 (COVID-19), and their immune-boosting properties. It was revealed that polyphenols could be considered as promising biologically active substances for the prevention of COVID-19. The underlying potential mechanism behind this action is mostly due to the antiviral activities and the immune-regulation functions of polyphenols against COVID-19-infections. Antivirus polyphenolic-based medications can mitigate SARS-CoV-2-enzymes, which are vital for virus duplication and infection. It was also found that triterpenoid, anthraquinone, flavonoids, and tannins are possible keys to scheming antiviral therapies for inhibiting SARS-CoV-2-proteases. The identified pharmacophore structures of polyphenols could be utilized in the explanation of novel anti-COVID-19 designs. The advantage of using mixtures containing polyphenols is related to the high-safety profile without having major side-effects, but further randomized controlled trials are required in the upcoming studies.

13.
Plants (Basel) ; 11(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009099

RESUMO

Fresh date palm fruits (cv. Barhi) have received much attention due to their sweet taste and popularity in marketing. There is a critical need to prolong their storability, as well as maintain their quality during the postharvest and marketing periods. In this study, the effects of spraying date palm trees with melatonin (Mt) and/or methyl jasmonate (Mj) at 10, 20, and 50 ppm, on their growth and yield were investigated. In addition, impacts on quality and storability of the fruits were also studied. In general, application of Mt was mostly more effective than that of Mj, even at 50 ppm, with regard to all evaluated parameters. However, the dual treatment at 50 ppm recorded the highest relative chlorophyll and nutrient content in date palm leaves, as well as the yield and its components. Regarding the date palm fruits stored at 4 °C for 28 days, this dual treatment recorded the lowest weight loss and fruit decay values (0.14 and 2%, respectively), the highest firmness (6 g·cm-2), total soluble solids content (36 °Brix), total sugar content (32.5 g/100 g fresh weight), and the lowest total acidity (0.16 g citric acid/100 mL juice). Moreover, the highest total phenolic content and activity of peroxidase and polyphenol oxidase enzymes in the stored fruits were also recorded for the dual treatment. In contrast to the untreated fruits, scanning electron microscopy observations showed that the sprayed fruits had a very good microstructure, showing intact and thick exocarp tissue with a dense layer of epicuticular wax. The mesocarp tissue showed a normal and clear cellular framework with well organized and arranged cells, after 28 days storage at 4 °C. Based on these results, we can conclude that application of the dual treatment (Mt + Mj) at 50 ppm is a promising way to prolong the storability of date palm fruits and maintain their quality during storage periods.

14.
Int J Food Sci ; 2019: 4686727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941357

RESUMO

The purpose of the present research was to develop novel flat bread supplemented with quinoa flour to raise its nutritional quality and functional properties. Furthermore, evaluation of the quality of developed bread was realized with blends at 5, 10, 15, 20, 25, and 30% of quinoa flour. Chemical composition of supplemented flat bread was determined. Several properties on dough (water absorption, dough development time, stability time, elasticity, and extensibility) and their corresponding characteristics (loaf specific volume, baking loss, roundness, height, baking time, hardness, cohesiveness, springiness, resilience, gumminess, and chewiness) were then evaluated. The protein content in bread-based quinoa blends was significantly increased gradually with increasing the percentage of quinoa flour from 12.12±0.63% in control to 15.85±0.065% in 30% quinoa flour. Also, the amino acids content was increased with increasing the percentage of quinoa flour. Mineral contents in 30% quinoa flour blend such as sodium, potassium, magnesium, calcium, iron, copper, manganese, and zinc were higher than other ratios and control bread (100% wheat flour). Rheological properties of supplemented bread such as specific volume, appearance, crust and crumb texture, aroma-odor, and colour were evaluated and found to be excellent. Physicosensory characteristics of the bread fortified with quinoa flour were evaluated and the most of panelists accepted and preferred the bread supplemented with quinoa flour more than control. The obtained unique nutritional, physicochemical, and organoleptic characteristics of quinoa flour-based flat bread open a new promising prospect for utilization of quinoa flour in an industrial scale for treatment and/or prevention of malnutrition in developing counties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA