RESUMO
Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.
Assuntos
Quirópteros , Vírus , Animais , Humanos , Reservatórios de Doenças , ÁfricaRESUMO
The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.
Assuntos
Cristalografia por Raios X/métodos , Complexo de Proteína do Fotossistema II/química , Cristalização , Modelos MolecularesRESUMO
Our internal casein kinase 1ε lead inhibitor, compound 1 was partially cleared by the polymorphic cytochrome P450 2D6. CYP2D6 involvement in metabolism implies more extensive clinical trials. We therefore wanted to reduce the contribution to clearance by this enzyme. We utilized metabolism reports for compound 1 performed in recombinant CYP2D6 together with structure-metabolism variation in structures of closely related analogs in order to see if we could incorporate similar substitution patterns in our lead compound. In addition, we utilized a previously established docking method using a modified CYP2D6 crystal structure to see if the metabolism patterns in CYP2D6 could be reproduced to afford the metabolites in the metabolism reports as well as those for the compounds used in the structure-metabolism relationship. All three of these steps, the metabolism report, the establishment of structure-metabolism relationships and the docking, lead to compound 10 where CYP2D6 was not involved in the clearance pathways.
Assuntos
Caseína Quinase 1 épsilon/antagonistas & inibidores , Citocromo P-450 CYP2D6/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Sítios de Ligação , Caseína Quinase 1 épsilon/metabolismo , Cristalografia por Raios X , Citocromo P-450 CYP2D6/genética , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
The chemokine receptors CCR5 and CCR2b share 89% amino acid homology. CCR5 is a co-receptor for HIV and CCR5 antagonists have been investigated as inhibitors of HIV infection. We describe the use of two CCR5 antagonists, Schering-C (SCH-C), which is specific for CCR5, and TAK-779, a dual inhibitor of CCR5 and CCR2b, to probe the CCR5 inhibitor binding site using CCR5/CCR2b chimeric receptors. Compound inhibition in the different chimeras was assessed by inhibition of chemokine-induced calcium flux. SCH-C inhibited RANTES (regulated on activation, normal T cell expressed and secreted) (CCL5)-mediated calcium flux on CCR5 with an IC50 of 22.8 nM but was inactive against monocyte chemoattractant protein-1 (CCL2)-mediated calcium flux on CCR2b. However, SCH-C inhibited CCL2-induced calcium flux against a CCR5/CCR2b chimera consisting of transmembrane domains IV-VI of CCR5 with an IC50 of 55 nM. A sequence comparison of CCR5 and CCR2b identified a divergent amino acid sequence located at the junction of transmembrane domain V and second extracellular loop. Transfer of the CCR5 sequence KNFQTLKIV into CCR2b conferred SCH-C inhibition (IC50 of 122 nM) into the predominantly CCR2b chimera. Furthermore, a single substitution, R206I, conferred partial but significant inhibition (IC50 of 1023 nM) by SCH-C. These results show that a limited amino acid sequence is responsible for SCH-C specificity to CCR5, and we propose a model showing the interaction with CCR5 Ile(198).
Assuntos
Amidas/química , Antagonistas dos Receptores CCR5/química , Modelos Moleculares , Compostos de Amônio Quaternário/química , Receptores CCR5/química , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Células HEK293 , Humanos , Isoleucina/química , Isoleucina/genética , Isoleucina/metabolismo , Macaca , Estrutura Terciária de Proteína , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/química , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Colony stimulating factor-1 receptor (CSF1R or c-FMS), a class III receptor tyrosine kinase expressed on members of the mononuclear phagocyte system (MPS), plays a key role in the proper functioning of macrophages, microglia, and related cells. Aberrant signaling through CSF1R has been associated with a variety of disease states, including cancer, inflammation, and neurodegeneration. In this Letter, we detail our efforts to develop novel CSF1R inhibitors. Drawing on previously described compounds, including GW2580 (4), we have discovered a novel series of compounds based on the imidazo[4,5-b]pyridine scaffold. Initial structure-activity relationship studies culminated in the identification of 36, a lead compound with potent CSF1R biochemical and cellular activity, acceptable in vitro ADME properties, and oral exposure in rat.
RESUMO
Bats host a broad diversity of coronaviruses (CoVs), including close relatives of human pathogens. There is only limited data on neotropical bat CoVs. We analysed faecal, blood and intestine specimens from 1562 bats sampled in Costa Rica, Panama, Ecuador and Brazil for CoVs by broad-range PCR. CoV RNA was detected in 50 bats representing nine different species, both frugivorous and insectivorous. These bat CoVs were unrelated to known human or animal pathogens, indicating an absence of recent zoonotic spill-over events. Based on RNA-dependent RNA polymerase (RdRp)-based grouping units (RGUs) as a surrogate for CoV species identification, the 50 viruses represented five different alphacoronavirus RGUs and two betacoronavirus RGUs. Closely related alphacoronaviruses were detected in Carollia perspicillata and C. brevicauda across a geographical distance exceeding 5600 km. Our study expands the knowledge on CoV diversity in neotropical bats and emphasizes the association of distinct CoVs and bat host genera.
Assuntos
Quirópteros/virologia , Coronavirus/classificação , Coronavirus/isolamento & purificação , Variação Genética , América , Animais , Sangue/virologia , Análise por Conglomerados , Coronavirus/genética , Fezes/virologia , Intestinos/virologia , Dados de Sequência Molecular , Filogeografia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Análise de Sequência de DNARESUMO
Bat echolocation is primarily used for orientation and foraging but also holds great potential for social communication. The communicative function of echolocation calls is still largely unstudied, especially in the wild. Eavesdropping on vocal signatures encoding social information in echolocation calls has not, to our knowledge, been studied in free-living bats so far. We analysed echolocation calls of the polygynous bat Saccopteryx bilineata and found pronounced vocal signatures encoding sex and individual identity. We showed experimentally that free-living males discriminate approaching male and female conspecifics solely based on their echolocation calls. Males always produced aggressive vocalizations when hearing male echolocation calls and courtship vocalizations when hearing female echolocation calls; hence, they responded with complex social vocalizations in the appropriate social context. Our study demonstrates that social information encoded in bat echolocation calls plays a crucial and hitherto underestimated role for eavesdropping conspecifics and thus facilitates social communication in a highly mobile nocturnal mammal.
Assuntos
Quirópteros/fisiologia , Quirópteros/psicologia , Ecolocação , Comportamento Social , Animais , Costa Rica , Feminino , Masculino , Vocalização AnimalRESUMO
The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX.
Assuntos
Elétrons , Lasers , Cristalografia por Raios X , Radiografia , Raios XRESUMO
The viral resistance of marketed antiviral drugs including the emergence of new viral resistance of the only marketed CCR5 entry inhibitor, maraviroc, makes it necessary to develop new CCR5 allosteric inhibitors. A mutagenesis/modeling approach was used (a) to remove the potential hERG liability in an otherwise very promising series of compounds and (b) to design a new class of compounds with an unique mutant fingerprint profile depending on residues in the N-terminus and the extracellular loop 2. On the basis of residues, which were identified by mutagenesis as key interaction sites, binding modes of compounds were derived and utilized for compound design in a prospective manner. The compounds were then synthesized, and in vitro evaluation not only showed that they had good antiviral potency but also fulfilled the requirement of low hERG inhibition, a criterion necessary because a potential approved drug would be administered chronically. This work utilized an interdisciplinary approach including medicinal chemistry, molecular biology, and computational chemistry merging the structural requirements for potency with the requirements of an acceptable in vitro profile for allosteric CCR5 inhibitors. The obtained mutant fingerprint profiles of CCR5 inhibitors were used to translate the CCR5 allosteric binding site into a general pharmacophore, which can be used for discovering new inhibitors.
Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Ureia/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Antagonistas dos Receptores CCR5 , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Mutagênese , Estereoisomerismo , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/químicaRESUMO
Novel benzofuran-2-carboxylic acids, exemplified by 29, 38 and 39, have been discovered as potent Pim-1 inhibitors using fragment based screening followed by X-ray structure guided medicinal chemistry optimization. The compounds demonstrate potent inhibition against Pim-1 and Pim-2 in enzyme assays. Compound 29 has been tested in the Ambit 442 kinase panel and demonstrates good selectivity for the Pim kinase family. X-ray structures of the inhibitor/Pim-1 binding complex reveal important salt-bridge and hydrogen bond interactions mediated by the compound's carboxylic acid and amino groups.
Assuntos
Benzofuranos/química , Ácidos Carboxílicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Estrutura Molecular , RatosRESUMO
A novel series of CCR5 antagonists were identified based on the redesign of Schering C. An SAR was established based on inhibition of CCR5 (RANTES) binding and these compounds exhibited potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells.
Assuntos
Amidas/química , Antagonistas dos Receptores CCR5 , Óxidos N-Cíclicos/química , HIV-1/efeitos dos fármacos , Piperidinas/química , Piridinas/química , Amidas/síntese química , Amidas/farmacocinética , Animais , Cães , Desenho de Fármacos , Humanos , Oximas , Ratos , Receptores CCR5/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacosRESUMO
A series of CCR5 antagonists were optimized for potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. Compounds that met acceptable ADME criteria, selectivity, human plasma protein binding, potency shift in the presence of α-glycoprotein were evaluated in rat and dog pharmacokinetics.
Assuntos
Amidas/síntese química , Fármacos Anti-HIV/síntese química , Antagonistas dos Receptores CCR5 , Desenho de Fármacos , HIV-1 , Leucócitos Mononucleares , Amidas/química , Amidas/farmacologia , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Cães , Humanos , Concentração Inibidora 50 , Leucócitos Mononucleares/efeitos dos fármacos , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Ratos , Replicação Viral/efeitos dos fármacosRESUMO
A phasing algorithm for macromolecular crystallography is proposed that utilizes diffraction data from multiple crystal forms - crystals of the same molecule with different unit-cell packings (different unit-cell parameters or space-group symmetries). The approach is based on the method of iterated projections, starting with no initial phase information. The practicality of the method is demonstrated by simulation using known structures that exist in multiple crystal forms, assuming some information on the molecular envelope and positional relationships between the molecules in the different unit cells. With incorporation of new or existing methods for determination of these parameters, the approach has potential as a method for ab initio phasing.
RESUMO
Vocal imitation--the ability to learn a previously unknown acoustic signal from a tutor--is considered to be a key innovation in the evolution of speech. This faculty is very rare and patchily distributed within the animal kingdom, suggesting multiple instances of convergent evolution. It has long been predicted that bats should be capable of vocal imitation and our results provide evidence for this phenomenon. We report that pups of the bat Saccopteryx bilineata learn a complex vocalization through vocal imitation. During ontogeny, pups of both sexes imitate territorial song from adult males, starting with simple precursor songs that develop into genuine renditions. The resemblance of pup renditions to their acoustic model is not caused by physical maturation effects, is independent of pups' gender and relatedness towards adult males and becomes more pronounced during ontogeny, showing that auditory experience is essential for vocal development. Our findings indicate that the faculty of vocal imitation is more widespread than previously thought and emphasize the importance of research on audiovocal communication in bats for a better understanding of the evolutionary origin of vocal imitation.
Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Quirópteros/crescimento & desenvolvimento , Comportamento Imitativo/fisiologia , Aprendizagem/fisiologia , Vocalização Animal/fisiologia , Animais , Quirópteros/fisiologia , Costa Rica , Feminino , Masculino , Espectrografia do SomRESUMO
The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.
RESUMO
CXC chemokine receptor (CXCR)4 is an HIV coreceptor and a chemokine receptor that plays an important role in several physiological and pathological processes, including hematopoiesis, leukocyte homing and trafficking, metastasis, and angiogenesis. This receptor belongs to the class A family of G protein-coupled receptors and is a validated target for the development of a new class of antiretroviral therapeutics. This study compares the interactions of three structurally diverse small-molecule CXCR4 inhibitors with the receptor and is the first report of the molecular interactions of the nonmacrocyclic CXCR4 inhibitor (S)-N'-(1H-benzimidazol-2-ylmethyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butene-1,4-diamine (AMD11070). Fourteen CXCR4 single-site mutants representing amino acid residues that span the entire putative ligand binding pocket were used in this study. These mutants were used in binding studies to examine how each single-site mutation affected the ability of the inhibitors to compete with (125)I-stromal-derived factor-1alpha binding. Our data suggest that these CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor. In addition, our results identified amino acid residues that are involved in unique interactions with two of the CXCR4 inhibitors studied. These data suggest an extended binding pocket in the transmembrane regions close to the second extracellular loop of the receptor. Based on site-directed mutagenesis and molecular modeling, several potential binding modes were proposed for each inhibitor. These mechanistic studies might prove to be useful for the development of future generations of CXCR4 inhibitors with improved clinical pharmacology and safety profiles.
Assuntos
Aminoquinolinas/farmacologia , Fármacos Anti-HIV/farmacologia , Benzimidazóis/farmacologia , Compostos Heterocíclicos/farmacologia , Piridinas/farmacologia , Receptores CXCR4/antagonistas & inibidores , Aminoquinolinas/metabolismo , Animais , Fármacos Anti-HIV/metabolismo , Benzimidazóis/metabolismo , Benzilaminas , Sítios de Ligação , Ligação Competitiva , Butilaminas , Fusão Celular , Linhagem Celular , Cricetinae , Cricetulus , Ciclamos , Compostos Heterocíclicos/metabolismo , Compostos Heterocíclicos com 1 Anel , Humanos , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Piridinas/metabolismo , Ensaio Radioligante , Receptores CXCR4/genética , Receptores CXCR4/metabolismoRESUMO
In medicinal chemistry, accurate prediction of additivity-based structure-activity relationship (SAR) analysis rests on three assumptions: (1) a consistent binding pose of the central scaffold, (2) no interaction between the R group substituents, and (3) a relatively rigid binding pocket in which the R group substituents act independently. Previously, examples of nonadditive SAR have been documented in systems that deviate from the first two assumptions. Local protein structural change upon ligand binding, through induced fit or conformational selection, although a well-known phenomenon that invalidates the third assumption, has not been linked to nonadditive SAR conclusively. Here, for the first time, we present clear structural evidence that the formation of a hydrophobic pocket upon ligand binding in PDE2 catalytic site reduces the size of another distinct subpocket and contributes to strong nonadditive SAR between two otherwise distant R groups.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Inibidores Enzimáticos/farmacologia , Modelos Teóricos , Conformação Proteica , Quinazolinas/química , Triazóis/química , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
A series of potent and selective [1,2,4]triazolo[1,5-a]pyrimidine PDE2a inhibitors is reported. The design and improvement of the binding properties of this series was achieved using X-ray crystal structures in conjunction with careful analysis of electronic and structural requirements for the PDE2a enzyme. One of the lead compounds, compound 27 (DNS-8254), was identified as a potent and highly selective PDE2a enzyme inhibitor with favorable rat pharmacokinetic properties. Interestingly, the increased potency of compound 27 was facilitated by the formation of a halogen bond with the oxygen of Tyr827 present in the PDE2a active site. In vivo, compound 27 demonstrated significant memory enhancing effects in a rat model of novel object recognition. Taken together, these data suggest that compound 27 may be a useful tool to explore the pharmacology of selective PDE2a inhibition.
Assuntos
Exonucleases/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Cromatografia Líquida , Humanos , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
RESUMO
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50â s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.