Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 56(50): 6585-6596, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29140092

RESUMO

Family 1 UDP-glycosyltransferases (UGTs) in plants primarily form glucose conjugates of small molecules and, besides other functions, play a role in detoxification of xenobiotics. Indeed, overexpression of a barley UGT in wheat has been shown to control Fusarium head blight, which is a plant disease of global significance that leads to reduced crop yields and contamination with trichothecene mycotoxins such as deoxynivalenol (DON), T-2 toxin, and many other structural variants. The UGT Os79 from rice has emerged as a promising candidate for inactivation of mycotoxins because of its ability to glycosylate DON, nivalenol, and hydrolyzed T-2 toxin (HT-2). However, Os79 is unable to modify T-2 toxin (T-2), produced by pathogens such as Fusarium sporotrichioides and Fusarium langsethii. Activity toward T-2 is desirable because it would allow a single UGT to inactivate co-occurring mycotoxins. Here, the structure of Os79 in complex with the products UDP and deoxynivalenol 3-O-glucoside is reported together with a kinetic analysis of a broad range of trichothecene mycotoxins. Residues associated with the trichothecene binding pocket were examined by site-directed mutagenesis that revealed that trichothecenes substituted at the C4 position, which are not glycosylated by wild-type Os79, can be accommodated in the binding pocket by increasing its volume. The H122A/L123A/Q202L triple mutation, which increases the volume of the active site and attenuates polar contacts, led to strong and equivalent activity toward trichothecenes with C4 acetyl groups. This mutant enzyme provides the broad specificity required to control multiple toxins produced by different Fusarium species and chemotypes.


Assuntos
Glucosiltransferases/química , Glucosiltransferases/metabolismo , Oryza/metabolismo , Fusarium/metabolismo , Glucosídeos , Sistema da Enzima Desramificadora do Glicogênio , Hordeum/enzimologia , Cinética , Mutagênese Sítio-Dirigida , Micotoxinas/metabolismo , Oryza/enzimologia , Doenças das Plantas , Proteínas de Plantas/metabolismo , Tricotecenos/química , Triticum
2.
J Exp Bot ; 68(9): 2187-2197, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407119

RESUMO

Fusarium Head Blight is a disease of cereal crops that causes severe yield losses and mycotoxin contamination of grain. The main causal pathogen, Fusarium graminearum, produces the trichothecene toxins deoxynivalenol or nivalenol as virulence factors. Nivalenol-producing isolates are most prevalent in Asia but co-exist with deoxynivalenol producers in lower frequency in North America and Europe. Previous studies identified a barley UDP-glucosyltransferase, HvUGT13248, that efficiently detoxifies deoxynivalenol, and when expressed in transgenic wheat results in high levels of type II resistance against deoxynivalenol-producing F. graminearum. Here we show that HvUGT13248 is also capable of converting nivalenol into the non-toxic nivalenol-3-O-ß-d-glucoside. We describe the enzymatic preparation of a nivalenol-glucoside standard and its use in development of an analytical method to detect the nivalenol-glucoside conjugate. Recombinant Escherichia coli expressing HvUGT13248 glycosylates nivalenol more efficiently than deoxynivalenol. Overexpression in yeast, Arabidopsis thaliana, and wheat leads to increased nivalenol resistance. Increased ability to convert nivalenol to nivalenol-glucoside was observed in transgenic wheat, which also exhibits type II resistance to a nivalenol-producing F. graminearum strain. Our results demonstrate the HvUGT13248 can act to detoxify deoxynivalenol and nivalenol and provide resistance to deoxynivalenol- and nivalenol-producing Fusarium.


Assuntos
Fusarium/metabolismo , Glucosiltransferases/genética , Hordeum/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Tricotecenos/metabolismo , Resistência à Doença/genética , Glucosiltransferases/metabolismo , Hordeum/enzimologia , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
3.
Arch Toxicol ; 91(2): 699-712, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27100115

RESUMO

Crossover animal trials were performed with intravenous and oral administration of deoxynivalenol-3-ß-D-glucoside (DON3G) and deoxynivalenol (DON) to broiler chickens and pigs. Systemic plasma concentrations of DON, DON3G and de-epoxy-DON were quantified using liquid chromatography-tandem mass spectrometry. Liquid chromatography coupled to high-resolution mass spectrometry was used to unravel phase II metabolism of DON. Additionally for pigs, portal plasma was analysed to study presystemic hydrolysis and metabolism. Data were processed via tailor-made compartmental toxicokinetic models. The results in broiler chickens indicate that DON3G is not hydrolysed to DON in vivo. Furthermore, the absolute oral bioavailability of DON3G in broiler chickens was low (3.79 ± 2.68 %) and comparable to that of DON (5.56 ± 2.05 %). After PO DON3G administration to pigs, only DON was detected in plasma, indicating a complete presystemic hydrolysis of the absorbed fraction of DON3G. However, the absorbed fraction of DON3G, recovered as DON, was approximately 5 times lower than after PO DON administration, 16.1 ± 5.4 compared with 81.3 ± 17.4 %. Analysis of phase II metabolites revealed that biotransformation of DON and DON3G in pigs mainly consists of glucuronidation, whereas in chickens predominantly conjugation with sulphate occurred. The extent of phase II metabolism is notably higher for chickens than for pigs, which might explain the differences in sensitivity of these species to DON. Although in vitro studies demonstrate a decreased toxicity of DON3G compared with DON, the species-dependent toxicokinetic data and in vivo hydrolysis to DON illustrate the toxicological relevance and consequently the need for further research to establish a tolerable daily intake.


Assuntos
Glucosídeos/farmacocinética , Tricotecenos/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Galinhas , Cromatografia Líquida/métodos , Glucosídeos/administração & dosagem , Glucosídeos/toxicidade , Hidrólise , Masculino , Reprodutibilidade dos Testes , Sus scrofa , Espectrometria de Massas em Tandem/métodos , Toxicocinética , Tricotecenos/administração & dosagem , Tricotecenos/toxicidade
4.
Appl Environ Microbiol ; 81(15): 4885-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979885

RESUMO

Glycosylation plays a central role in plant defense against xenobiotics, including mycotoxins. Glucoconjugates of Fusarium toxins, such as deoxynivalenol-3-O-ß-d-glucoside (DON-3G), often cooccur with their parental toxins in cereal-based food and feed. To date, only limited information exists on the occurrence of glucosylated mycotoxins and their toxicological relevance. Due to a lack of analytical standards and the requirement of high-end analytical instrumentation for their direct determination, hydrolytic cleavage of ß-glucosides followed by analysis of the released parental toxins has been proposed as an indirect determination approach. This study compares the abilities of several fungal and recombinant bacterial ß-glucosidases to hydrolyze the model analyte DON-3G. Furthermore, substrate specificities of two fungal and two bacterial (Lactobacillus brevis and Bifidobacterium adolescentis) glycoside hydrolase family 3 ß-glucosidases were evaluated on a broader range of substrates. The purified recombinant enzyme from B. adolescentis (BaBgl) displayed high flexibility in substrate specificity and exerted the highest hydrolytic activity toward 3-O-ß-d-glucosides of the trichothecenes deoxynivalenol (DON), nivalenol, and HT-2 toxin. A Km of 5.4 mM and a Vmax of 16 µmol min(-1) mg(-1) were determined with DON-3G. Due to low product inhibition (DON and glucose) and sufficient activity in several extracts of cereal matrices, this enzyme has the potential to be used for indirect analyses of trichothecene-ß-glucosides in cereal samples.


Assuntos
Bifidobacterium/enzimologia , Celulases/metabolismo , Fusarium/metabolismo , Glucosídeos/metabolismo , Toxina T-2/análogos & derivados , Tricotecenos/metabolismo , Celulases/química , Celulases/isolamento & purificação , Grão Comestível/química , Hidrólise , Cinética , Levilactobacillus brevis/enzimologia , Micotoxinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Toxina T-2/metabolismo
5.
Anal Bioanal Chem ; 407(20): 6009-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26065425

RESUMO

A critical assessment of three previously published indirect methods based on acidic hydrolysis using superacids for the determination of "free" and "total" deoxynivalenol (DON) was carried out. The modified mycotoxins DON-3-glucoside (D3G), 3-acetyl-DON (3ADON), and 15-acetyl-DON (15ADON) were chosen as model analytes. The initial experiments focused on the stability/degradation of DON under hydrolytic conditions and the ability to release DON from the modified forms. Acidic conditions that were capable of cleaving D3G, 3ADON, and 15ADON to DON were not found, raising doubts over the efficacy of previously published indirect methods for total DON determination. Validation of these indirect methods for wheat, maize, and barley using UHPLC-MS/MS was performed in order to test the accuracy of the generated results. Validation data for DON, D3G, 3ADON, and 15ADON in nonhydrolyzed and hydrolyzed matrices were obtained. Under the tested conditions, DON was not released from D3G, 3ADON, or 15ADON after hydrolysis and thus none of the published methods were able to cleave the modified forms of DON. In addition to acids, alkaline hydrolysis with KOH for an extended time and at elevated temperatures was also tested. 3ADON and 15ADON were cleaved under the alkaline pH caused by the addition of KOH or aqueous K2CO3 to "neutralize" the acidic sample extracts in the published studies. The published additional DON increase after hydrolysis may have been caused by huge differences in matrix effects and the recovery of DON in nonhydrolyzed and hydrolyzed matrices as well as by the alkaline cleavage of 3ADON or 15ADON after the neutralization of hydrolyzed extracts.


Assuntos
Grão Comestível/química , Glucosídeos/análise , Micotoxinas/análise , Tricotecenos/análise , Cromatografia Líquida/métodos , Grão Comestível/microbiologia , Hordeum/química , Hordeum/microbiologia , Hidrólise , Espectrometria de Massas em Tandem/métodos , Triticum/química , Triticum/microbiologia , Zea mays/química , Zea mays/microbiologia
6.
Anal Bioanal Chem ; 407(16): 4745-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25935671

RESUMO

A reliable and sensitive liquid chromatography-tandem mass spectrometric method was developed for the simultaneous quantitative determination in cereals of the Fusarium mycotoxins HT-2 toxin, T-2 toxin, deoxynivalenol, nivalenol and zearalenone, as well as the modified metabolites 3-acetyl-deoxynivalenol, α-zearalenol, ß-zearalenol, deoxynivalenol-3-glucoside, HT-2-3-glucoside, nivalenol-3-glucoside, zearalenone-14-glucoside, zearalenone-14-sulphate, zearalenone-16-glucoside, α-zearalenol-14-glucoside and ß-zearalenol-14-glucoside. The 'dilute and shoot' approach was used for sample preparation after extraction with acetonitrile:water:acetic acid (79:20:1, v/v/v). Separation was carried out using reversed-phase liquid chromatography, and detection was performed using tandem mass spectrometry in the selected reaction monitoring mode. The method was in-house validated according to performance characteristics, established in Commission Regulation EC No 401/2006 and Commission Decision EC No 657/2002, prior to its application in a nationwide survey for the analysis of barley, oat and wheat samples (n = 95) harvested in Finland during 2013. Deoxynivalenol and its glucosylated form were the most abundant of the analytes, being detected in 93 and 81 % of the samples, respectively. Concentrations of deoxynivalenol were unusually high in 2013, especially in oats, with some cases exceeding the maximum legislative limits for unprocessed oats placed on the market for first-stage processing. All modified mycotoxins analysed were detected, and the natural occurrence of some of these compounds (e.g. zearalenone-16-glucoside and nivalenol-3-glucoside) in barley, oats and/or wheat was documented for the first time.


Assuntos
Cromatografia Líquida/métodos , Grão Comestível/química , Espectrometria de Massas em Tandem/métodos , Tricotecenos/análise , Zearalenona/análise , Finlândia
7.
Anal Bioanal Chem ; 407(26): 8019-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26335000

RESUMO

An extensive study of the metabolism of the type A trichothecene mycotoxins HT-2 toxin and T-2 toxin in barley using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) is reported. A recently developed untargeted approach based on stable isotopic labelling, LC-Orbitrap-MS analysis with fast polarity switching and data processing by MetExtract software was combined with targeted LC-Q-TOF-MS(/MS) analysis for metabolite structure elucidation and quantification. In total, 9 HT-2 toxin and 13 T-2 toxin metabolites plus tentative isomers were detected, which were successfully annotated by calculation of elemental formulas and further LC-HRMS/MS measurements as well as partly identified with authentic standards. As a result, glucosylated forms of the toxins, malonylglucosides, and acetyl and feruloyl conjugates were elucidated. Additionally, time courses of metabolite formation and mass balances were established. For absolute quantification of those compounds for which standards were available, the method was validated by determining apparent recovery, signal suppression, or enhancement and extraction recovery. Most importantly, T-2 toxin was rapidly metabolised to HT-2 toxin and for both parent toxins HT-2 toxin-3-O-ß-glucoside was identified (confirmed by authentic standard) as the main metabolite, which reached its maximum already 1 day after toxin treatment. Graphical Abstract Isotope-assisted untargeted screening of HT-2 toxin and T-2 toxin metabolites in barley.


Assuntos
Fusarium/metabolismo , Hordeum/metabolismo , Hordeum/microbiologia , Toxina T-2/análogos & derivados , Toxina T-2/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
8.
Food Microbiol ; 49: 211-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846933

RESUMO

Despite its potential health benefits, the integration of wheat bran into the food sector is difficult due to several adverse technological and sensory properties such as bitterness and grittiness. Sourdough fermentation is a promising strategy to improve the sensory quality of bran without inducing severe changes to the bran matrix. Therefore, identification of species/strains with potential for industrial sourdough fermentations is important. We compared the effects of different representatives of species of lactic acid bacteria (LAB) on wheat bran. Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus brevis, Lactobacillus sanfranciscensis and Fructobacillus fructosus produced highly individual fermentation patterns as judged from carbohydrate consumption and organic acid production. Interestingly, fructose was released during all bran fermentations and possibly influenced the fermentation profiles of obligately heterofermentative species to varying degrees. Except for the reduction of ferulic acid by L. plantarum and L. pentosus, analyses of phenolic compounds and alkylresorcinols suggested that only minor changes thereof were induced by the LAB metabolism. Sensory analysis of breads baked with fermented bran did not reveal significant differences regarding perceived bitterness and aftertaste. We conclude that in addition to more traditionally used sourdough species such as L. sanfranciscensis and L. brevis, also facultatively heterofermentative species such as L. plantarum and L. pentosus possess potential for industrial wheat bran fermentations and should be considered in further investigations.


Assuntos
Pão/microbiologia , Fibras na Dieta/microbiologia , Lactobacillaceae/metabolismo , Triticum/microbiologia , Fibras na Dieta/metabolismo , Fermentação , Humanos , Ácido Láctico/metabolismo , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Paladar , Triticum/metabolismo
9.
Appl Environ Microbiol ; 79(21): 6747-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995921

RESUMO

Due to their potential prebiotic properties, arabinoxylan-derived oligosaccharides [(A)XOS] are of great interest as functional food and feed ingredients. While the (A)XOS metabolism of Bifidobacteriaceae has been extensively studied, information regarding lactic acid bacteria (LAB) is still limited in this context. The aim of the present study was to fill this important gap by characterizing candidate (A)XOS hydrolyzing glycoside hydrolases (GHs) identified in the genome of Lactobacillus brevis DSM 20054. Two putative GH family 43 xylosidases (XynB1 and XynB2) and a GH family 43 arabinofuranosidase (Abf3) were heterologously expressed and characterized. While the function of XynB1 remains unclear, XynB2 could efficiently hydrolyze xylooligosaccharides. Abf3 displayed high specific activity for arabinobiose but could not release arabinose from an (A)XOS preparation. However, two previously reported GH 51 arabinofuranosidases from Lb. brevis were able to specifically remove α-1,3-linked arabinofuranosyl residues from arabino-xylooligosaccharides (AXHm3 specificity). These results imply that Lb. brevis is at least genetically equipped with functional enzymes in order to hydrolyze the depolymerization products of (arabino)xylans and arabinans. The distribution of related genes in Lactobacillales genomes indicates that GH 43 and, especially, GH 51 glycosidase genes are rare among LAB and mainly occur in obligately heterofermentative Lactobacillus spp., Pediococcus spp., members of the Leuconostoc/Weissella branch, and Enterococcus spp. Apart from the prebiotic viewpoint, this information also adds new perspectives on the carbohydrate (i.e., pentose-oligomer) metabolism of LAB species involved in the fermentation of hemicellulose-containing substrates.


Assuntos
Glicosídeo Hidrolases/metabolismo , Levilactobacillus brevis/enzimologia , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Sequência de Bases , Cromatografia Gasosa , Cromatografia por Troca Iônica , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Glicosídeo Hidrolases/genética , Hidrólise , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Corantes de Rosanilina , Análise de Sequência de DNA
10.
J Mol Catal B Enzym ; 92(100): 34-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23914137

RESUMO

Ram2 from Pediococcus acidilactici is a rhamnosidase from the glycoside hydrolase family 78. It shows remarkable selectivity for rutinose rather than para-nitrophenyl-alpha-l-rhamnopyranoside (p-NPR). Molecular dynamics simulations were performed using a homology model of this enzyme, in complex with both substrates. Free energy calculations lead to predicted binding affinities of -34.4 and -30.6 kJ mol-1 respectively, agreeing well with an experimentally estimated relative free energy of 5.4 kJ mol-1. Further, the most relevant binding poses could be determined. While p-NPR preferably orients its rhamnose moiety toward the active site, rutinose interacts most strongly with its glucose moiety. A detailed hydrogen bond analysis confirms previously implicated residues in the active site (Asp217, Asp222, Trp226, Asp229 and Glu488) and quantifies the importance of individual residues for the binding. The most important amino acids are Asp229 and Phe339 which are involved in many interactions during the simulations. While Phe339 was observed in more simulations, Asp229 was involved in more persistent interactions (forming an average of at least 2 hydrogen bonds during the simulation). These analyses directly suggest mutations that could be used in a further experimental characterization of the enzyme. This study shows once more the strength of computer simulations to rationalize and guide experiments at an atomic level.

11.
Appl Environ Microbiol ; 77(4): 1528-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169445

RESUMO

Putative α-L-arabinofuranosidases of Oenococcus oeni and Lactobacillus brevis were heterologously expressed and characterized. We report the basic functional properties of the recombinant enzymes in comparison to those of a commercial family 51 arabinosidase of Aspergillus niger.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Levilactobacillus brevis/enzimologia , Levilactobacillus brevis/genética , Oenococcus/enzimologia , Oenococcus/genética , Aspergillus niger/enzimologia , Aspergillus niger/genética , Eletroforese em Gel de Poliacrilamida , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Appl Environ Microbiol ; 77(18): 6524-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21784921

RESUMO

α-L-Rhamnosidases play an important role in the hydrolysis of glycosylated aroma compounds (especially terpenes) from wine. Although several authors have demonstrated the enological importance of fungal rhamnosidases, the information on bacterial enzymes in this context is still limited. In order to fill this important gap, two putative rhamnosidase genes (ram and ram2) from Pediococcus acidilactici DSM 20284 were heterologously expressed, and the respective gene products were characterized. In combination with a bacterial ß-glucosidase, both enzymes released the monoterpenes linalool and cis-linalool oxide from a muscat wine extract under ideal conditions. Additionally, Ram could release significant amounts of geraniol and citronellol/nerol. Nevertheless, the potential enological value of these enzymes is limited by the strong negative effects of acidity and ethanol on the activities of Ram and Ram2. Therefore, a direct application in winemaking seems unlikely. Although both enzymes are members of the same glycosyl hydrolase family (GH 78), our results clearly suggest the distinct functionalities of Ram and Ram2, probably representing two subclasses within GH 78: Ram could efficiently hydrolyze only the synthetic substrate p-nitrophenyl-α-L-rhamnopyranoside (V(max) = 243 U mg(-1)). In contrast, Ram2 displayed considerable specificity toward hesperidin (V(max) = 34 U mg(-1)) and, especially, rutinose (V(max) = 1,200 U mg(-1)), a disaccharide composed of glucose and rhamnose. Both enzymes were unable to hydrolyze the flavanone glycoside naringin. Interestingly, both enzymes displayed indications of positive substrate cooperativity. This study presents detailed kinetic data on two novel rhamnosidases, which could be relevant for the further study of bacterial glycosidases.


Assuntos
Glicosídeo Hidrolases/metabolismo , Pediococcus/enzimologia , Monoterpenos Acíclicos , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Etanol/metabolismo , Expressão Gênica , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Cinética , Monoterpenos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Terpenos/metabolismo , Vinho
13.
Toxins (Basel) ; 13(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34564604

RESUMO

The Fusarium mycotoxin deoxynivalenol (DON) is a common contaminant of cereals and is often co-occurring with its modified forms DON-3-glucoside (D3G), 3-acetyl-DON (3ADON) or 15-acetyl-DON (15ADON). A stable-isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method for their determination in cereals was developed and validated for maize. Therefore, 13C-labelled D3G was enzymatically produced using 13C-DON and [13C6Glc]-sucrose and used as an internal standard (IS) for D3G, while uniformly 13C labelled IS was used for the other mycotoxins. Baseline separation was achieved for the critical peak pair DON/D3G, while 3ADON/15ADON could not be fully baseline separated after testing various reversed phase, fluorinated phase and chiral LC columns. After grinding, weighing and extracting the cereal samples, the raw extract was centrifuged and a mixture of the four 13C-labelled ISs was added directly in a microinsert vial. The subsequent analytical run took 7 min, followed by negative electrospray ionization and selected reaction monitoring on a triple quadrupole MS. Maize was used as a complex cereal model matrix for validation. The use of the IS corrected the occurring matrix effects efficiently from 76 to 98% for D3G, from 86 to 103% for DON, from 68 to 100% for 15ADON and from 63 to 96% for 3ADON.


Assuntos
Fusarium/química , Micotoxinas/análise , Micotoxinas/toxicidade , Tricotecenos/análise , Tricotecenos/toxicidade , Zea mays/química , Zea mays/microbiologia , Áustria , Cromatografia Líquida/métodos , Grão Comestível/química , Grão Comestível/microbiologia , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem/métodos
14.
Toxins (Basel) ; 12(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013156

RESUMO

Major type B trichothecene mycotoxins, including deoxynivalenol (DON), nivalenol (NIV), and their respective glucoside conjugates, deoxynivalenol-3-ß-D-glucose (DON3G) and nivalenol-3-ß-D-glucose (NIV3G), are present in food products, such as cereals, legumes, and their processed products. Thus, here, DON, NIV, and their 3-ß-D-glucosides were monitored in 506 Korean market foods, and exposure to these mycotoxins was estimated in the population consuming these foods. The accuracy and precision of our method, which simultaneously determined four toxins, were 80.1-106.5% and 0.3-12.4%, in four representative food matrices assessed. The incidences of DON, DON3G, NIV, and NIV3G among all food samples tested were 13%, 8%, 12%, and 5%, respectively. The glucoside conjugate with free toxin was found to have the maximum co-occurrence of 49%. The estimated daily intakes of DON, DON3G, NIV, and NIV3G through food intake under four different scenarios were 0.019-0.102, 0.004-0.089, 0.007-0.094, and 0.002-0.095 µg kg-1 body weight (b.w.) day-1, respectively, which are lower than the established health-based guidance values. Overall, our results suggest that the estimated exposure of the Korean population to type B trichothecenes, namely, DON, NIV, and their 3-ß-D-glucoside conjugates, may not pose a potential health risk.


Assuntos
Exposição Dietética/análise , Contaminação de Alimentos/análise , Glucosídeos/análise , Tricotecenos/análise , Adolescente , Adulto , Criança , Pré-Escolar , Monitoramento Ambiental , Humanos , Lactente , Pessoa de Meia-Idade , República da Coreia , Medição de Risco , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-31034333

RESUMO

A simple and reliable method for the simultaneous determination of major type B trichothecene mycotoxins, deoxynivalenol (DON) and nivalenol (NIV), along with their 3-ß-d-glucosides (DON-3-glucoside (DON3G) and NIV-3-glucoside (NIV3G)) in baby formula and Korean rice wine was validated in the present study. The method was based on immunoaffinity cleanup followed by analysis using an HPLC-UV technique. The method was validated in-house for two matrices as follows: linearity (R2 > 0.99) was established in the range of 20-1000 µg kg-1; accuracy (expressed as recovery) ranged from 78.7 to 106.5% for all the analytes; good intermediate precision (relative standard deviation < 12%), and adequate detection and quantitation limits (< 4.4 and < 13.3 µg kg-1, respectively) were achieved. Furthermore, the estimated measurement expanded uncertainty was determined to be 4-24%. The validated method was successfully applied to the analysis of 31 baby formulas and Korean rice wines marketed in Korea.


Assuntos
Contaminação de Alimentos/análise , Glucosídeos/análise , Fórmulas Infantis/análise , Tricotecenos/análise , Vinho/análise , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Grão Comestível/química , República da Coreia , Espectrofotometria Ultravioleta
16.
Front Pharmacol ; 10: 1160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680951

RESUMO

The mycotoxin zearalenone (ZEN) is produced by many plant pathogenic Fusarium species. It is well known for its estrogenic activity in humans and animals, but whether ZEN has a role in plant-pathogen interaction and which process it is targeting in planta was so far unclear. We found that treatment of Arabidopsis thaliana seedlings with ZEN induced transcription of the AtHSP90.1 gene. This heat shock protein (HSP) plays an important role in plant-pathogen interaction, assisting in stability and functionality of various disease resistance gene products. Inhibition of HSP90 ATPase activity impairs functionality. Because HSP90 inhibitors are known to induce HSP90 gene expression and due to the structural similarity with the known HSP90 inhibitor radicicol (RAD), we tested whether ZEN and its phase I metabolites α- and ß-zearalenol are also HSP90 ATPase inhibitors. Indeed, AtHSP90.1 and wheat TaHSP90-2 were inhibited by ZEN and ß-zearalenol, while α-zearalenol was almost inactive. Plants can efficiently glycosylate ZEN and α/ß-zearalenol. We therefore tested whether glucosylation has an effect on the inhibitory activity of these metabolites. Expression of the A. thaliana glucosyltransferase UGT73C6 conferred RAD resistance to a sensitive yeast strain. Glucosylation of RAD, ZEN, and α/ß-zearalenol abolished the in vitro inhibitory activity with recombinant HSP90 purified from Escherichia coli. In conclusion, the mycotoxin ZEN has a very prominent target in plants, HSP90, but it can be inactivated by glycosylation. This may explain why there is little evidence for a virulence function of ZEN in host plants.

17.
Toxicol Lett ; 306: 43-52, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769082

RESUMO

Plant-derived mycotoxin conjugates like deoxynivalenol-3-glucoside can be partly hydrolyzed to their aglycones in vivo, albeit to different extent depending on the mycotoxin conjugate and on the animal species. The aim of this work was to investigate the metabolization of the trichothecene mycotoxin nivalenol (NIV) and the fate of its modified form NIV-3-glucoside (NIV3G) in rats. To that end, 350 µg/kg body weight of NIV and the equimolar dose of NIV3G were administered to six rats by gavage in a 5 × 6 design and excreta were collected for 2 days after each treatment. For further analysis of NIV and NIV3G metabolites in rat urine and feces, seven novel NIV- and NIV3G metabolites including NIV sulfonates (NIVS) 1, 2 and 3, deepoxy-NIV (DNIV), DNIV sulfonate 2, NIV3G sulfonate (NIV3GS) 2 and NIV-3-glucuronide were produced, isolated and characterized. Subsequently, LC-MS/MS based methods for determination of NIV, NIV3G and their metabolites in excreta samples were developed, validated and applied. The biological recoveries of administered toxins in the form of their fecal and urinary metabolites were 57 ± 21% for NIV and 94 ± 36% for NIV3G. The majority of NIV and NIV3G metabolites was excreted into feces, with DNIV and NIVS 2 as major NIV metabolites and NIV3GS 2 and DNIV as major metabolites of NIV3G. Only 1.5% of the administered NIV3G was recovered in urine, with NIV3G itself as major urinary metabolite. The biological recovery of free NIV in urine was approximately 30 times lower after treatment with NIV3G than after administration of NIV, indicating that exposure of rats to NIV3G results in lower toxicity than exposure to NIV.


Assuntos
Micotoxinas/metabolismo , Tricotecenos/metabolismo , Animais , Biotransformação , Fezes/química , Glucosídeos/metabolismo , Glucosídeos/toxicidade , Glucuronídeos/metabolismo , Contagem de Leucócitos , Masculino , Micotoxinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Tricotecenos/farmacocinética , Tricotecenos/toxicidade
18.
Front Microbiol ; 9: 1954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258410

RESUMO

In filamentous fungi such as Fusarium graminearum, disruption of multiple genes of interest in the same strain (e.g., to test for redundant gene function) is a difficult task due to the limited availability of reliable selection markers. We have created a series of transformation vectors that allow antibiotic-based selection of transformants and subsequent negative selection for marker removal using thymidine kinase fusions combined with the Cre-loxP system. The fusion genes contain commonly used C-terminal drug resistance markers, either nptII (G418), nat1 (nourseothricin), or hph (hygromycin B). These resistance genes are fused to the sequence encoding Herpes simplex virus thymidine kinase (HSVtk). Despite the presence of the 1 kb HSVtk gene (about ∼30% increase in total marker size), there is only a slight reduction in transformation efficiency on a molar basis. The fusion genes expressed under the Trichoderma pyruvate kinase (PKI) promoter also confer antibiotic resistance in Escherichia coli, allowing straightforward construction of disruption plasmids. For removal of the loxP flanked resistance cassettes, protoplasts of transformants are directly treated with purified Cre recombinase protein. Loss of the HSVtk containing cassette is selected by restoration of resistance to 5-fluoro-2-deoxyuridine (FdU). As a proof of principle, we demonstrated the efficiency of the HSVtk-based marker removal in Fusarium by reversing the disruption phenotype of the gene responsible for production of the red pigment aurofusarin. We first disrupted the FgPKS12 gene via integration of the loxP-flanked HSVtk-nptII cassette into the promoter or the first intron, thereby generating transformants with a white mycelium phenotype. Using Cre recombinase and FdU, the selection marker was subsequently removed, and the resulting transformants regained red pigmentation despite the remaining loxP site. We also found that it is possible to remove several unselected loxP-flanked cassettes with a single Cre protein treatment, as long as one of them contains a negative selectable HSVtk cassette. The negative selection system can also be used to introduce allele swaps into strains without leaving marker sequences, by first disrupting the gene of interest and then complementing the deletion in situ with genomic DNA containing a different allele.

19.
Toxins (Basel) ; 10(3)2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509722

RESUMO

Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 (Brachypodium), were expressed in E. coli, affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively ß-D-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins.


Assuntos
Brachypodium/enzimologia , Glucosídeos/metabolismo , Glicosiltransferases/metabolismo , Hordeum/enzimologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Tricotecenos/metabolismo
20.
Toxins (Basel) ; 9(2)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208710

RESUMO

The Fusarium mycotoxin zearalenone (ZEN) can be conjugated with polar molecules, like sugars or sulfates, by plants and fungi. To date, the fate of these modified forms of ZEN has not yet been elucidated in animals. In order to investigate whether ZEN conjugates contribute to the total ZEN exposure of an individual, ZEN (10 µg/kg b.w.) and equimolar amounts of two of its plant metabolites (ZEN-14-O-ß-glucoside, ZEN-16-O-ß-glucoside) and of one fungal metabolite (ZEN-14-sulfate) were orally administered to four pigs as a single bolus using a repeated measures design. The concentrations of ZEN, its modified forms and its mammalian metabolites ZEN-14-glucuronide, α-zearalenol (α-ZEL) and α-ZEL-14-glucuronide in excreta were analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based methods. The biological recovery of ZEN in urine was 26% ± 10%, the total biological recovery in excreta was 40% ± 8%. Intact ZEN-14-sulfate, ZEN-14-O-ß-glucoside and ZEN-16-O-ß-glucoside were neither detected in urine nor in feces. After ZEN-14-sulfate application, 19% ± 5% of the administered dose was recovered in urine. In feces, no ZEN metabolites were detected. The total biological recoveries of ZEN-14-O-ß-glucoside and ZEN-16-O-ß-glucoside in the form of their metabolites in urine were 19% ± 11% and 13% ± 7%, respectively. The total biological recoveries in urine and feces amounted to 48% ± 7% and 34 ± 3%. An explanation for the low biological recoveries could be extensive metabolization by intestinal bacteria to yet unknown metabolites. In summary, ZEN-14-sulfate, ZEN-14-O-ß-glucoside, and ZEN-16-O-ß-glucoside were completely hydrolyzed in the gastrointestinal tract of swine, thus contributing to the overall toxicity of ZEN.


Assuntos
Microbiologia de Alimentos , Zearalenona/metabolismo , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Fezes/química , Glucosídeos/metabolismo , Glucuronídeos/metabolismo , Hidrólise , Absorção Intestinal , Eliminação Intestinal , Masculino , Desintoxicação Metabólica Fase II , Eliminação Renal , Sus scrofa , Espectrometria de Massas em Tandem , Zearalenona/administração & dosagem , Zearalenona/análogos & derivados , Zearalenona/toxicidade , Zearalenona/urina , Zeranol/análogos & derivados , Zeranol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA