RESUMO
Small cell lung cancer (SCLC) is a recalcitrant malignancy. Conquering it will require deep insight into its biology. In this issue of Cell, Liu and colleagues describe proteomic and phosphoproteomic landscapes of resected SCLC tumors and illustrate the potential of this knowledge to identify new SCLC vulnerabilities.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Proteômica , ConhecimentoRESUMO
Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Família 4 do Citocromo P450/deficiência , Família 4 do Citocromo P450/genética , Descoberta de Drogas , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismoRESUMO
What changes need to occur in a primary tumor to make it metastatic? Denny et al. address this question for small cell lung cancer (SCLC), finding that changes in genomic accessibility mediated by a single transcription factor, NFIB, comprise at least one mechanism influencing metastasis.
Assuntos
Linhagem Celular Tumoral , Cromatina , Humanos , Neoplasias Pulmonares , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição/genéticaRESUMO
Genome-wide association studies (GWASs) have unraveled a large number of cancer risk alleles. Understanding how these allelic variants predispose to disease is a major bottleneck confronting translational application. In this issue, Li and colleagues combine GWASs with The Cancer Genome Atlas (TCGA) to disambiguate the contributions of germline and somatic variants to tumorigenic gene expression programs. They find that close to half of the known risk alleles for estrogen receptor (ER)-positive breast cancer are expression quantitative trait loci (eQTLs) acting upon major determinants of gene expression in tumors.
RESUMO
Context-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity. Anchoring this analysis on a matched tumor/normal cell model from a lung adenocarcinoma patient identified three distinct target/response-indicator pairings that are represented with significant frequencies (6%-16%) in the patient population. These include NLRP3 mutation/inflammasome activation-dependent FLIP addiction, co-occurring KRAS and LKB1 mutation-driven COPI addiction, and selective sensitivity to a synthetic indolotriazine that is specified by a seven-gene expression signature. Target efficacies were validated in vivo, and mechanism-of-action studies informed generalizable principles underpinning cancer cell biology.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Indóis/farmacologia , Neoplasias Pulmonares/metabolismo , Triazinas/farmacologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte , Linhagem Celular Tumoral , Proteína Coatomer/metabolismo , Feminino , Genes ras , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Lisossomos/metabolismo , Camundongos , Terapia de Alvo Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transplante de Neoplasias , Fosforilação OxidativaRESUMO
Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.
Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Biocatálise , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilação , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/metabolismo , Metaboloma/fisiologia , Biomarcadores Tumorais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Neoplasias/metabolismoRESUMO
The mechanics of the cellular microenvironment continuously modulates cell functions such as growth, survival, apoptosis, differentiation and morphogenesis via cytoskeletal remodelling and actomyosin contractility1-3. Although all of these processes consume energy4,5, it is unknown whether and how cells adapt their metabolic activity to variable mechanical cues. Here we report that the transfer of human bronchial epithelial cells from stiff to soft substrates causes a downregulation of glycolysis via proteasomal degradation of the rate-limiting metabolic enzyme phosphofructokinase (PFK). PFK degradation is triggered by the disassembly of stress fibres, which releases the PFK-targeting E3 ubiquitin ligase tripartite motif (TRIM)-containing protein 21 (TRIM21). Transformed non-small-cell lung cancer cells, which maintain high glycolytic rates regardless of changing environmental mechanics, retain PFK expression by downregulating TRIM21, and by sequestering residual TRIM21 on a stress-fibre subset that is insensitive to substrate stiffness. Our data reveal a mechanism by which glycolysis responds to architectural features of the actomyosin cytoskeleton, thus coupling cell metabolism to the mechanical properties of the surrounding tissue. These processes enable normal cells to tune energy production in variable microenvironments, whereas the resistance of the cytoskeleton in response to mechanical cues enables the persistence of high glycolytic rates in cancer cells despite constant alterations of the tumour tissue.
Assuntos
Microambiente Celular , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glucose/metabolismo , Glicólise , Dureza , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Brônquios/citologia , Bovinos , Diferenciação Celular , Linhagem Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleoproteínas/metabolismo , Fibras de Estresse/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Tumor heterogeneity of a primary histologic cancer type has major implications for cancer research and therapeutics. An important and understudied aspect of this heterogeneity is the role of transcription factors that serve as "lineage oncogenes" in a tumor type. A demonstration that different subgroups have distinct dependencies on lineage-specific transcription factors is highlighted in a relatively homogenous cancer type: the pulmonary neuroendocrine cancer small cell lung carcinoma (SCLC). Identification of these factors is providing new insights into the origin of the heterogeneity and subtype-specific vulnerabilities in SCLC and provides a template for studying heterogeneity in other cancer types.
Assuntos
Carcinoma Neuroendócrino/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem da Célula , Heterogeneidade Genética , Humanos , MutaçãoRESUMO
Certain oncogenes, including mutant RAS and BRAF, induce a type of senescence known as oncogene-induced senescence (OIS) in normal cells in a cell-type-specific manner. OIS serves as a barrier to transformation by activated oncogenes. Our previous studies showed that mutant KRASV12 did not efficiently induce OIS in an hTERT/Cdk4-immortalized normal human bronchial epithelial cell line (HBEC3), but it did enhance both anchorage-dependent and anchorage-independent growth. In this study, we investigated whether mutant BRAF, a well-known inducer of OIS, could trigger OIS in HBEC3 cells. We also assessed the impact of mutant BRAF on the growth of HBEC3 cells, as no previous studies have examined this using a normal bronchial epithelial cell line model. We established an HBEC3 cell line, designated as HBEC3-BIN, that expresses mutant BRAFV600E in a doxycycline-regulated manner. Unlike our previous finding that KRASV12 upregulated both pERK and pAKT, mutant BRAFV600E upregulated pERK but not pAKT in HBEC3-BIN cells. Similar to KRASV12, BRAFV600E did not efficiently induce OIS. Interestingly, while BRAFV600E inhibited colony formation in anchorage-dependent conditions, it dramatically enhanced colony formation in anchorage-independent conditions in HBEC3-BIN. In HBEC3 cells without BRAFV600E or KRASV12 expression, p21 was only detected in the cytoplasm, and its localization was not altered by the expression of BRAFV600E or KRASV12. Next-generation sequencing analysis revealed an enrichment of gene sets known to be involved in carcinogenesis, including IL3/JAK/STAT3, IL2, STAT5, and the EMT pathway. Our results indicate that, unlike KRASV12, which promoted both, BRAFV600E enhances anchorage-independent growth but inhibits anchorage-dependent growth of HBEC3. This contrast may result from differences in activation signaling in the downstream pathways. Furthermore, HBEC3 cells appear to be inherently resistant to OIS, which may be partly due to the fact that p21 remains localized in the cytoplasm upon expression of BRAFV600E or KRASV12.
Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Senescência Celular/genética , Mutação , Proliferação de Células/genética , Linhagem Celular , Células Epiteliais/metabolismo , Brônquios/metabolismo , Brônquios/citologia , Oncogenes/genética , Transdução de SinaisRESUMO
Further analysis has revealed that the signal reported in Extended Data Fig. 1c of this Letter is attributed to phosphorylethanolamine, not carbamoyl phosphate. A newly developed derivatization method revealed that the level of carbamoyl phosphate in these NSCLC extracts is below the detection threshold of approximately 10 nanomoles. These findings do not alter the overall conclusions of the Letter; see associated Amendment for full details. The Letter has not been corrected online.
RESUMO
INTRODUCTION: Inflammation plays a significant role in various cancers, including lung cancer, where the inflammatory cytokine IL-1ß is often elevated in the tumor microenvironment. Patients with lung adenocarcinoma show higher levels of serum IL-1ß compared to healthy individual. Moreover, IL-1ß blockade reduces the incidence and mortality of lung cancer. Our prior studies revealed that alveolar type-II cells, the precursors for lung adenocarcinoma, display an induction in the expression of the enzyme tryptophan 2,3-dioxygenase (TDO2) during normal lung development. This induction of TDO2 coincides with an increase in IL-1ß levels and is likely caused by IL-1ß. Given that cancer cells can co-opt developmentally regulated pathways, we hypothesized that IL-1ß may exert its pro-tumoral function by stimulating TDO2 and indoleamine 2, 3-dioxygenase-1 (IDO1), parallel enzymes involved in the conversion of tryptophan (Trp) into the immune-suppressive oncometabolite kynurenine (Kyn). Our goal was to determine whether IL-1ß is a common upstream regulator of immune checkpoint regulators. METHODS: To determine whether IL-1ß regulates IDO1, TDO2, PD-L1, and PD-L2, we measured mRNA and protein levels in lung adenocarcinoma cells lines (A549, H1792, H1838, H2347, H2228, HCC364 and HCC827) grown in 2D or 3D and in immortalized normal lung epithelial cells (HBEC3-KT and HSAEC1-KT). To determine the importance of the NFκB pathway in mediating IL-1ß -regulated cellular effects, we used siRNA to knockdown RelA/p65 in IL-1ß treated cells. The levels of Trp and Kyn in the IL-1ß-treated cells and media were measured by mass spectrometry. RESULTS: Upon IL-1ß stimulation, lung adenocarcinoma cells exhibited significant increases in IDO1 mRNA and protein levels, a response that depended on the NFκB pathway. Interestingly, this induction was more pronounced in 3D spheroid cultures compared to monolayer cultures and was not observed in normal immortalized lung epithelial cells. Furthermore, the conversion of Trp to Kyn increased in cells exposed to IL-1ß, aligning with the heightened IDO1 expression. Remarkably, IL-1ß also upregulated the expression of programmed death ligand-1 (PD-L1) and PD-L2 in multiple cell lines, indicating that IL-1ß triggers parallel immune-suppressive mechanisms in lung adenocarcinoma cells. CONCLUSIONS: Our studies demonstrate that lung adenocarcinoma cells, but not normal immortalized lung epithelial cells, respond to IL-1ß signaling by inducing the expression of parallel immune checkpoint proteins that have the potential to promote immune evasion. Video Abstract.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/metabolismo , Antígeno B7-H1/metabolismo , Cinurenina/metabolismo , Neoplasias Pulmonares/patologia , RNA Mensageiro , Triptofano , Microambiente TumoralRESUMO
Mutant KRAS, the most frequently occurring (â¼30%) driver oncogene in lung adenocarcinoma, induces normal epithelial cells to undergo senescence. This phenomenon, called "oncogene-induced senescence (OIS)", prevents mutant KRAS-induced malignant transformation. We have previously reported that mutant KRASV12 induces OIS in a subset of normal human bronchial epithelial cell line immortalized with hTERT and Cdk4. Understanding the mechanism and efficacy of this important cancer prevention mechanism is a key knowledge gap. Therefore, this study investigates mutant KRASV12-induced OIS in upregulated telomerase combined with the p16/RB pathway inactivation in normal bronchial epithelial cells. The normal (non-transformed and non-tumorigenic) human bronchial epithelial cell line HBEC3 (also called "HBEC3KT"), immortalized with hTERT ("T") and Cdk4 ("K"), was used in this study. HBEC3 that expressed mutant KRASV12 in a doxycycline-regulated manner was established (designated as HBEC3-RIN2). Controlled induction of mutant KRASV12 expression induced partial epithelial-to-mesenchymal transition in HBEC3-RIN2 cells, which was associated with upregulated expression of ZEB1 and SNAIL. Mutant KRASV12 caused the majority of HBEC3-RIN2 to undergo morphological changes; suggestive of senescence, which was associated with enhanced autophagic flux. Upon mutant KRASV12 expression, only a small HBEC3-RIN2 cell subset underwent senescence, as assessed by a senescence-associated ß-galactosidase staining (SA-ßG) method. Furthermore, mutant KRASV12 enhanced cell growth, evaluated by colorimetric proliferation assay, and liquid and soft agar colony formation assays, partially through increased phosphorylated AKT and ERK expression but did not affect cell division, or cell cycle status. Intriguingly, mutant KRASV12 reduced p53 protein expression but increased p21 protein expression by prolonging its half-life. These results indicate that an hTERT/Cdk4 -immortalized normal bronchial epithelial cell line is partially resistant to mutant KRASV12-induced senescence. This suggests that OIS does not efficiently suppress KRASV12-induced transformation in the context of the simultaneous occurrence of telomerase upregulation and inactivation of the p16/Rb pathway.
Assuntos
Telomerase , Brônquios/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Senescência Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Telomerase/genética , Telomerase/metabolismoRESUMO
Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.
Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , DNA/biossíntese , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Amônia/metabolismo , Animais , Bicarbonatos/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular , Proliferação de Células , Dano ao DNA/efeitos dos fármacos , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Inativação Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Nitrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/metabolismo , Pirimidinas/farmacologia , Fase S , Transcrição Gênica , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
MOTIVATION: Many high-throughput screening studies have been carried out in cancer cell lines to identify therapeutic agents and targets. Existing consistency assessment studies only examined two datasets at a time, with conclusions based on a subset of carefully selected features rather than considering global consistency of all the data. However, poor concordance can still be observed for a large part of the data even when selected features are highly consistent. RESULTS: In this study, we assembled nine compound screening datasets and three functional genomics datasets. We derived direct measures of consistency as well as indirect measures of consistency based on association between functional data and copy number-adjusted gene expression data. These results have been integrated into a web application-the Functional Data Consistency Explorer (FDCE), to allow users to make queries and generate interactive visualizations so that functional data consistency can be assessed for individual features of interest. AVAILABILITY AND IMPLEMENTATION: The FDCE web tool and we have developed and the functional data consistency measures we have generated are available at https://lccl.shinyapps.io/FDCE/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Detecção Precoce de Câncer , Neoplasias , Humanos , Genômica , Software , Linhagem CelularRESUMO
To identify potential new reagents and biomarkers for early lung cancer detection we combined the use of a novel preclinical isogenic model of human lung epithelial cells comparing non-malignant cells with those transformed to full malignancy using defined oncogenic changes and our on-bead two color (red and green stained cells) (OBTC) peptoid combinatorial screening methodology. The preclinical model used normal parent lung epithelial cells (HBEC3-KT, labeled with green dye) and isogenic fully malignant transformed derivatives (labeled with a red dye) via the sequential introduction of key genetic alterations of p53 knockdown, oncogenic KRAS and overexpression of cMYC (HBEC3p53, KRAS, cMYC). Using the unbiased OBTC screening approach, we tested 100,000 different peptoids and identified only one (named JM3A) that bound to the surface of the HBEC3p53, KRAS, cMYC cells (red cells) but not HBEC3-KT cells (green cells). Using the JM3A peptoid and proteomics, we identified the protein bound as vimentin using multiple validation approaches. These all confirmed the cell surface expression of vimentin (CSV) on transformed (HBEC3p53, KRAS, cMYC) but not on untransformed (HBEC3-KT) cells. JM3A coupled with fluorophores was able to detect and stain cell surface vimentin on very early stage lung cancers but not normal lung epithelial cells in a fashion comparable to that using anti-vimentin antibodies. We conclude: using a combined isogenic preclinical model of lung cancer and two color screening of a large peptoid library, we have identified differential expression of cell surface vimentin (CSV) after malignant transformation of lung epithelial cells, and developed a new peptoid reagent (JM3A) for detection of CSV which works well in staining of early stage NSCLCs. This new, highly specific, easy to prepare, CSV detecting JM3A peptoid provides an important new reagent for identifying cancer cells in early stage tumors as well as a resource for detection and isolating of CSV expressing circulating tumor cells.
Assuntos
Células Epiteliais/metabolismo , Neoplasias Pulmonares/metabolismo , Peptoides/metabolismo , Vimentina/genética , Linhagem Celular , Humanos , Neoplasias Pulmonares/patologia , Estrutura Molecular , Peptoides/química , Vimentina/metabolismoRESUMO
The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5-Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1-TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.
Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas Relacionadas à Folistatina/genética , Genes Letais/genética , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Porfirinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Verteporfina , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Proteína Exportina 1RESUMO
The intramural the National Cancer Institute (NCI) and more recently the University of Texas Southwestern Medical Center with many different collaborators comprised a complex, multi-disciplinary team that collaborated to generated large, comprehensively annotated, cell-line related research resources which includes associated clinical, and molecular characterization data. This material has been shared in an anonymized fashion to accelerate progress in overcoming lung cancer, the leading cause of cancer death across the world. However, this cell line collection also includes a range of other cancers derived from patient-donated specimens that have been remarkably valuable for other types of cancer and disease research. A comprehensive analysis conducted by the NCI Center for Research Strategy of the 278 cell lines reported in the original Journal of Cellular Biochemistry Supplement, documents that these cell lines and related products have since been used in more than 14 000 grants, and 33 207 published scientific reports. This has resulted in over 1.2 million citations using at least one cell line. Many publications involve the use of more than one cell line, to understand the value of the resource collectively rather than individually; this method has resulted in 2.9 million citations. In addition, these cell lines have been linked to 422 clinical trials and cited by 4700 patents through publications. For lung cancer alone, the cell lines have been used in the research cited in the development of over 70 National Comprehensive Cancer Network clinical guidelines. Finally, it must be underscored again, that patient altruism enabled the availability of this invaluable research resource.
RESUMO
High-grade neuroendocrine lung cancer (HGNEC), which includes small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung is a rapidly proliferating, aggressive form of lung cancer. The initial standard chemotherapeutic regimens of platinum doublets are recommended for SCLC and have been frequently used for LCNEC. However, there are currently no molecularly targeted agents with proven clinical benefit for this disease. The deubiquitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCHL1) is a neuroendocrine cell-specific product that is known as a potential oncogene in several types of cancer, but little is known about the biological function of UCHL1 and its therapeutic potential in HGNEC. In this study, we found that preclinical efficacy evoked by targeting UCHL1 was relevant to prognosis in HGNEC. UCHL1 was found to be expressed in HGNEC, particularly in cell lines and patient samples of SCLC, and the combined use of platinum doublets with selective UCHL1 inhibitors improved its therapeutic response in vitro. Immunohistochemical expression of UCHL1 was significantly associated with postoperative survival in patients with HGNEC and contributed towards distinguishing SCLC from LCNEC. Circulating extracellular vesicles (EV), including exosomes isolated from lung cancer cell lines and serum from early-stage HGNEC, were verified by electron microscopy and nanoparticle tracking analysis. Higher levels of UCHL1 mRNA in EV were found in the samples of patients with early-stage HGNEC than those with early-stage NSCLC and healthy donors' EV. Taken together, UCHL1 may be a potential prognostic marker and a promising druggable target for HGNEC.