Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant J ; 115(4): 1071-1083, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177878

RESUMO

The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Filogenia , Zinco/metabolismo , Metais/metabolismo , Plantas/metabolismo , Defensinas/genética , Defensinas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Plant Physiol ; 189(2): 839-857, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35312013

RESUMO

Plant sphingolipids mostly possess 2-hydroxy fatty acids (HFA), the synthesis of which is catalyzed by FA 2-hydroxylases (FAHs). In Arabidopsis (Arabidopsis thaliana), two FAHs (FAH1 and FAH2) have been identified. However, the functions of FAHs and sphingolipids with HFAs (2-hydroxy sphingolipids) are still unknown because of the lack of Arabidopsis lines with the complete deletion of FAH1. In this study, we generated a FAH1 mutant (fah1c) using CRISPR/Cas9-based genome editing. Sphingolipid analysis of fah1c, fah2, and fah1cfah2 mutants revealed that FAH1 hydroxylates very long-chain FAs (VLCFAs), whereas the substrates of FAH2 are VLCFAs and palmitic acid. However, 2-hydroxy sphingolipids are not completely lost in the fah1cfah2 double mutant, suggesting the existence of other enzymes catalyzing the hydroxylation of sphingolipid FAs. Plasma membrane (PM) analysis and molecular dynamics simulations revealed that hydroxyl groups of sphingolipid acyl chains play a crucial role in the organization of nanodomains, which are nanoscale liquid-ordered domains mainly formed by sphingolipids and sterols in the PM, through hydrogen bonds. In the PM of the fah1cfah2 mutant, the expression levels of 26.7% of the proteins, including defense-related proteins such as the pattern recognition receptors (PRRs) brassinosteroid insensitive 1-associated receptor kinase 1 and chitin elicitor receptor kinase 1, NADPH oxidase respiratory burst oxidase homolog D (RBOHD), and heterotrimeric G proteins, were lower than that in the wild-type. In addition, reactive oxygen species (ROS) burst was suppressed in the fah1cfah2 mutant after treatment with the pathogen-associated molecular patterns flg22 and chitin. These results indicated that 2-hydroxy sphingolipids are necessary for the organization of PM nanodomains and ROS burst through RBOHD and PRRs during pattern-triggered immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Quitina/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Esfingolipídeos/metabolismo
3.
J Biol Chem ; 296: 100602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785359

RESUMO

The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.


Assuntos
Membrana Celular/metabolismo , Plantas/metabolismo , Esfingolipídeos/metabolismo , Biofísica , Polissacarídeos/metabolismo , Especificidade da Espécie , Esfingolipídeos/química
4.
Plant J ; 98(4): 654-666, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30693583

RESUMO

Pyridine nucleotides (NAD(P)(H)) are electron carriers that are the driving forces in various metabolic pathways. Phosphorylation of NAD(H) to NADP(H) is performed by the enzyme NAD kinase (NADK). Synechocystis sp. PCC 6803 harbors two genes (sll1415 and slr0400) that encode proteins with NADK homology. When genetic mutants for sll1415 and slr0400 (Δ1415 and Δ0400, respectively) were cultured under photoheterotrophic growth conditions only the Δ1415 cells showed a growth defect. In wild-type cells, the sll1415 transcript accumulated after the cells were transferred to photoheterotrophic conditions. Furthermore, NAD(P)(H) measurements demonstrated that a dynamic metabolic conversion was implemented during the adaptation from photoautotrophic to photoheterotrophic conditions. Electron microscopy observation and biochemistry quantification demonstrated the accumulation of glycogen in the Δ1415 cells under photoheterotrophic conditions at 96 h. Quantitative real-time reverse transcription PCR (qRT-PCR) demonstrated the accumulation of mRNAs that encoded glycogen biosynthesis-related enzymes in photoheterotrophic Δ1415 cells. At 96 h, enzyme activity measurement in the photoheterotrophic Δ1415 cells demonstrated that the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were decreased, but the activities of glucose dehydrogenase were increased. Furthermore, metabolomics analysis demonstrated that the Δ1415 cells showed increased glucose-6-phosphate and 6-phosphogluconate content at 96 h. Therefore, sll1415 has a significant function in the oxidative pentose phosphate (OPP) pathway for catabolism of glucose under photoheterotrophic conditions. Additionally, it is presumed that the slr0400 had a different role in glucose catabolism during growth. These results suggest that the two Synechocystis sp. PCC 6803 NADKs (Sll1415 and Slr0400) have distinct functions in photoheterotrophic cyanobacterial metabolism.


Assuntos
Glucose/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Synechocystis/enzimologia , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Gluconatos/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/biossíntese , Glicogênio/genética , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Mutação , Via de Pentose Fosfato , Fosfogluconato Desidrogenase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento
5.
Physiol Plant ; 170(2): 299-308, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32579231

RESUMO

Leaf senescence is controlled developmentally and environmentally and is affected by numerous genes, including transcription factors. An Arabidopsis NAC domain transcription factor, ATAF2, is known to regulate biotic stress responses. Recently, we have demonstrated that ATAF2 upregulates ORE1, a key regulator of leaf senescence. Here, to investigate the function of ATAF2 in leaf senescence further, we generated and analyzed overexpressing transgenic and T-DNA inserted mutant lines. Transient expression analysis indicated that ATAF2 upregulates several NAC domain transcription factors that regulate senescence. Indeed, ATAF2 overexpression induced the expression of senescence-related genes, thereby accelerating leaf senescence, whereas the expression of such genes in ataf2 mutants was lower than that of wild-type plants. Furthermore, the ataf2 mutants exhibited significant delays in dark-induced leaf senescence. It was also found that ATAF2 induces the expression of transcription factors, which both promotes and represses leaf senescence. The present study demonstrates that ATAF2 promotes leaf senescence in response to developmental and environmental signals.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Fatores de Transcrição/genética
6.
Plant Cell ; 28(8): 1966-83, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27465023

RESUMO

Numerous plant defense-related proteins are thought to congregate in plasma membrane microdomains, which consist mainly of sphingolipids and sterols. However, the extent to which microdomains contribute to defense responses in plants is unclear. To elucidate the relationship between microdomains and innate immunity in rice (Oryza sativa), we established lines in which the levels of sphingolipids containing 2-hydroxy fatty acids were decreased by knocking down two genes encoding fatty acid 2-hydroxylases (FAH1 and FAH2) and demonstrated that microdomains were less abundant in these lines. By testing these lines in a pathogen infection assay, we revealed that microdomains play an important role in the resistance to rice blast fungus infection. To illuminate the mechanism by which microdomains regulate immunity, we evaluated changes in protein composition, revealing that microdomains are required for the dynamics of the Rac/ROP small GTPase Rac1 and respiratory burst oxidase homologs (Rbohs) in response to chitin elicitor. Furthermore, FAHs are essential for the production of reactive oxygen species (ROS) after chitin treatment. Together with the observation that RbohB, a defense-related NADPH oxidase that interacts with Rac1, is localized in microdomains, our data indicate that microdomains are required for chitin-induced immunity through ROS signaling mediated by the Rac1-RbohB pathway.


Assuntos
Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Oryza/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
J Plant Res ; 132(1): 131-143, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30604175

RESUMO

Bax inhibitor-1 (BI-1) is a widely conserved cell death regulator that confers resistance to environmental stress in plants. Previous studies suggest that Arabidopsis thaliana BI-1 (AtBI-1) modifies sphingolipids by interacting with cytochrome b5 (AtCb5), an electron-transfer protein. To reveal how AtBI-1 regulates sphingolipid synthesis, we screened yeast sphingolipid-deficient mutants and identified yeast ELO2 and ELO3 as novel enzymes that are essential for AtBI-1 function. ELO2 and ELO3 are condensing enzymes that synthesize very-long-chain fatty acids (VLCFAs), major fatty acids in plant sphingolipids. In Arabidopsis, we identified four ELO homologs (AtELO1-AtELO4), localized in the endoplasmic reticulum membrane. Of those AtELOs, AtELO1 and AtELO2 had a characteristic histidine motif and were bound to AtCb5-B. This result suggests that AtBI-1 interacts with AtELO1 and AtELO2 through AtCb5. AtELO2 and AtCb5-B also interact with KCR1, PAS2, and CER10, which are essential for the synthesis of VLCFAs. Therefore, AtELO2 may participate in VLCFA synthesis with AtCb5 in Arabidopsis. In addition, our co-immunoprecipitation/mass spectrometry analysis demonstrated that AtBI-1 forms a complex with AtELO2, KCR1, PAS2, CER10, and AtCb5-D. Furthermore, AtBI-1 contributes to the rapid synthesis of 2-hydroxylated VLCFAs in response to oxidative stress. These results indicate that AtBI-1 regulates VLCFA synthesis by interacting with VLCFA-synthesizing enzymes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Graxos/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Esfingolipídeos/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo
8.
PLoS Pathog ; 11(2): e1004629, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658451

RESUMO

The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity.


Assuntos
Morte Celular/imunologia , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Oryza/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Apoptose/imunologia , GTP Fosfo-Hidrolases/biossíntese , GTP Fosfo-Hidrolases/imunologia , Imunidade Inata/imunologia , Imunoprecipitação , Proteínas de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
9.
Plant Physiol ; 169(1): 180-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26036614

RESUMO

In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.


Assuntos
Etilenos/biossíntese , Ácidos Graxos/metabolismo , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos Cíclicos/análise , Aminoácidos Cíclicos/farmacologia , Morte Celular/efeitos dos fármacos , Etilenos/análise , Ácidos Graxos/análise , Mutação , Compostos Organofosforados/farmacologia , Oryza/genética , Oryza/fisiologia , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia
10.
J Biol Chem ; 289(41): 28569-78, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25128531

RESUMO

Rac/Rop proteins are Rho-type small GTPases that act as molecular switches in plants. Recent studies have identified these proteins as key components in many major plant signaling pathways, such as innate immunity, pollen tube growth, and root hair formation. In rice, the Rac/Rop protein OsRac1 plays an important role in regulating the production of reactive oxygen species (ROS) by the NADPH oxidase OsRbohB during innate immunity. However, the molecular mechanism by which OsRac1 regulates OsRbohB remains unknown. Here, we report the crystal structure of OsRac1 complexed with the non-hydrolyzable GTP analog guanosine 5'-(ß,γ-imido)triphosphate at 1.9 Å resolution; this represents the first active-form structure of a plant small GTPase. To elucidate the ROS production in rice cells, structural information was used to design OsRac1 mutants that displayed reduced binding to OsRbohB. Only mutations in the OsRac1 Switch I region showed attenuated interactions with OsRbohB in vitro. In particular, Tyr(39) and Asp(45) substitutions suppressed ROS production in rice cells, indicating that these residues are critical for interaction with and activation of OsRbohB. Structural comparison of active-form OsRac1 with AtRop9 in its GDP-bound inactive form showed a large conformational difference in the vicinity of these residues. Our results provide new insights into the molecular mechanism of the immune response through OsRac1 and the various cellular responses associated with plant Rac/Rop proteins.


Assuntos
Guanilil Imidodifosfato/química , NADPH Oxidases/química , Oryza/química , Fosfatos de Fosfatidilinositol/química , Proteínas de Plantas/química , Proteínas rac1 de Ligação ao GTP/química , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Guanilil Imidodifosfato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oryza/enzimologia , Oryza/genética , Oryza/imunologia , Oxirredução , Fosfatos de Fosfatidilinositol/metabolismo , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Planta ; 239(1): 39-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097264

RESUMO

Arabidopsis cell growth defect factor-1 (Cdf1 in yeast, At5g23040) was originally isolated as a cell growth suppressor of yeast from genetic screening. To investigate the in vivo role of Cdf1 in plants, a T-DNA insertion line was analyzed. A homozygous T-DNA insertion mutant (cdf1/cdf1) was embryo lethal and showed arrested embryogenesis at the globular stage. The Cdf1 protein, when fused with green fluorescent protein, was localized to the plastid in stomatal guard cells and mesophyll cells. A promoter-ß-glucuronidase assay found expression of Cdf1 in the early heart stage of embryogenesis, suggesting that Cdf1 was essential for Arabidopsis embryogenesis during the transition of the embryo from the globular to heart stage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte/metabolismo , Plastídeos/metabolismo , Proteínas Repressoras/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Teste de Complementação Genética , Heterozigoto , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
12.
Planta ; 240(1): 77-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687220

RESUMO

Bax inhibitor-1 (BI-1) is a widely conserved cell death suppressor localized in the endoplasmic reticulum membrane. Our previous results revealed that Arabidopsis BI-1 (AtBI-1) interacts with not only Arabidopsis cytochrome b 5 (Cb5), an electron transfer protein, but also a Cb5-like domain (Cb5LD)-containing protein, Saccharomyces cerevisiae fatty acid 2-hydroxylase 1, which 2-hydroxylates sphingolipid fatty acids. We have now found that AtBI-1 binds Arabidopsis sphingolipid Δ8 long-chain base (LCB) desaturases AtSLD1 and AtSLD2, which are Cb5LD-containing proteins. The expression of both AtBI-1 and AtSLD1 was increased by cold exposure. However, different phenotypes were observed in response to cold treatment between an atbi-1 mutant and a sld1sld2 double mutant. To elucidate the reasons behind the difference, we analyzed sphingolipids and found that unsaturated LCBs in atbi-1 were not altered compared to wild type, whereas almost all LCBs in sld1sld2 were saturated, suggesting that AtBI-1 may not be necessary for the desaturation of LCBs. On the other hand, the sphingolipid content in wild type increased in response to low temperature, whereas total sphingolipid levels in atbi-1 were unaltered. In addition, the ceramide-modifying enzymes AtFAH1, sphingolipid base hydroxylase 2 (AtSBH2), acyl lipid desaturase 2 (AtADS2) and AtSLD1 were highly expressed under cold stress, and all are likely to be related to AtBI-1 function. These findings suggest that AtBI-1 contributes to synthesis of sphingolipids during cold stress by interacting with AtSLD1, AtFAH1, AtSBH2 and AtADS2.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Esfingolipídeos/metabolismo , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Ceramidas/metabolismo , Temperatura Baixa , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Oxirredutases , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Esfingolipídeos/análise , Estresse Fisiológico
13.
Plant Physiol ; 159(3): 1138-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22635113

RESUMO

2-Hydroxy fatty acids (2-HFAs) are predominantly present in sphingolipids and have important physicochemical and physiological functions in eukaryotic cells. Recent studies from our group demonstrated that sphingolipid fatty acid 2-hydroxylase (FAH) is required for the function of Arabidopsis (Arabidopsis thaliana) Bax inhibitor-1 (AtBI-1), which is an endoplasmic reticulum membrane-localized cell death suppressor. However, little is known about the function of two Arabidopsis FAH homologs (AtFAH1 and AtFAH2), and it remains unclear whether 2-HFAs participate in cell death regulation. In this study, we found that both AtFAH1 and AtFAH2 had FAH activity, and the interaction with Arabidopsis cytochrome b5 was needed for the sufficient activity. 2-HFA analysis of AtFAH1 knockdown lines and atfah2 mutant showed that AtFAH1 mainly 2-hydroxylated very-long-chain fatty acid (VLCFA), whereas AtFAH2 selectively 2-hydroxylated palmitic acid in Arabidopsis. In addition, 2-HFAs were related to resistance to oxidative stress, and AtFAH1 or 2-hydroxy VLCFA showed particularly strong responses to oxidative stress. Furthermore, AtFAH1 interacted with AtBI-1 via cytochrome b5 more preferentially than AtFAH2. Our results suggest that AtFAH1 and AtFAH2 are functionally different FAHs, and that AtFAH1 or 2-hydroxy VLCFA is a key factor in AtBI-1-mediated cell death suppression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/metabolismo , Esfingolipídeos/metabolismo , Estresse Fisiológico , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ésteres/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Hidroxilação/efeitos dos fármacos , Oxigenases de Função Mista/genética , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
14.
Plant Sci ; 336: 111840, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619867

RESUMO

In plants, the 2-hydroxy fatty acids (HFAs) of sphingolipids are important for plant growth and stress responses. Although the synthetic pathway of HFAs is well understood, their degradation has not yet been elucidated. In Saccharomyces cerevisiae, Mpo1 has been identified as a dioxygenase that degrades HFAs. This study examined the functions of two homologs of yeast Mpo1, MHP1 and MHL, in Arabidopsis thaliana. The mhp1 and mhp1mhl mutants showed a dwarf phenotype compared to that of the wild type. Lipid analysis of the mutants revealed the involvement of MHP1 and MHL in synthesizing odd-chain fatty acids (OCFAs), possibly by the degradation of HFAs. OCFAs are present in trace amounts in plants; however, their physiological significance is largely unknown. RNA sequence analysis of the mhp1mhl mutant revealed that growth-related genes decreased, whereas genes involved in stress response increased. Additionally, the mhp1mhl mutant had increased expression of defense-related genes and increased resistance to infection by Pseudomonas syringae pv. tomato DC3000 (Pto), and Pto carrying the effector AvrRpt2. Phytohormone analysis demonstrated that jasmonic acid in mhp1mhl was higher than that in the wild type. These results indicate that MHP1 and MHL are involved in synthesizing OCFAs and immunity in Arabidopsis.

15.
J Plant Physiol ; 283: 153950, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889102

RESUMO

Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Glicina/metabolismo , NAD/metabolismo , NADP/metabolismo , Serina/metabolismo
16.
Plant Direct ; 7(9): e529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731912

RESUMO

The NAM, ATAF1/2, and CUC2 (NAC) domain transcription factor VND-INTERACTING2 (VNI2) negatively regulates xylem vessel formation by interacting with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel formation. Here, we screened interacting proteins with VNI2 using yeast two-hybrid assay and isolated two NAC domain transcription factors, Arabidopsis thaliana ACTIVATION FACTOR 2 (ATAF2) and NAC DOMAIN CONTAINING PROTEIN 102 (ANAC102). A transient gene expression assay showed that ATAF2 upregulates the expression of genes involved in leaf senescence, and VNI2 effectively inhibits the transcriptional activation activity of ATAF2. vni2 mutants accelerate leaf senescence, whereas ataf2 mutants delay leaf senescence. In addition, the accelerated leaf senescence phenotype of the vni2 mutant is recovered by simultaneous mutation of ATAF2. Our findings strongly suggest that VNI2 interacts with and inhibits ATAF2, resulting in negatively regulating leaf senescence.

17.
Biosci Biotechnol Biochem ; 75(5): 877-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21597180

RESUMO

Rumex obtusifolius L., a member of Polygonaceae, is one of the world's worst weeds. We characterized the glucosylceramide molecular species in leaves of R. obtusifolius by liquid chromatography/tandem mass spectrometry. 4,8-Sphingadienines were principally paired with 2-hydroxy palmitic acids. In contrast, 4-hydroxy-8-sphingenines were chiefly attached to 2-hydroxy fatty acids with 22 to 26 carbon-chain length. A unique characteristic of the 2-hydroxy fatty acid composition of R. obtusifolius was the high content of n-9 monoenoic 2-hydroxy fatty acids with 22 and 24 carbon-chain length. The levels of the Z and E stereoisomers of the 8-unsaturated long-chain bases were reliably distinguished from those in other plant families in ten species of Polygonaceae.


Assuntos
Glucosilceramidas/análise , Plantas Daninhas/química , Polygonaceae/química , Rumex/química , Glucosilceramidas/química , Glucosilceramidas/isolamento & purificação , Folhas de Planta/química , Estereoisomerismo
18.
J Biol Chem ; 284(41): 27998-28003, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19674971

RESUMO

Bax inhibitor-1 (BI-1) is a cell death suppressor protein conserved across a variety of organisms. The Arabidopsis atbi1-1 plant is a mutant in which the C-terminal 6 amino acids of the expressed BI-1 protein have been replaced by T-DNA insertion. This mutant BI-1 protein (AtBI-CM) produced in Escherichia coli can no longer bind to calmodulin. A promoter-reporter assay demonstrated compartmentalized expression of BI-1 during hypersensitive response, introduced by the inoculation of Pseudomonas syringae possessing the avrRTP2 gene, Pst(avrRPT2). In addition, both BI-1 knockdown plants and atbi1-1 showed increased sensitivity to Pst(avrRPT2)-induced cell death. The results indicated that the loss of calmodulin binding reduces the cell death suppressor activity of BI-1 in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Calmodulina/metabolismo , Morte Celular/fisiologia , Proteínas de Membrana/metabolismo , Pseudomonas syringae/fisiologia , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Calmodulina/classificação , Calmodulina/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica
19.
Plant J ; 58(1): 122-34, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19054355

RESUMO

Bax inhibitor-1 (BI-1) is a widely conserved cytoprotective protein localized in the endoplasmic reticulum (ER) membrane. We identified Arabidopsis cytochrome b(5) (AtCb5) as an interactor of Arabidopsis BI-1 (AtBI-1) by screening the Arabidopsis cDNA library with the split-ubiquitin yeast two-hybrid (suY2H) system. Cb5 is an electron transfer protein localized mainly in the ER membrane. In addition, a bimolecular fluorescence complementation (BiFC) assay and fluorescence resonance energy transfer (FRET) analysis confirmed that AtBI-1 interacted with AtCb5 in plants. On the other hand, we found that the AtBI-1-mediated suppression of cell death in yeast requires Saccharomyces cerevisiae fatty acid hydroxylase 1 (ScFAH1), which had a Cb5-like domain at the N terminus and interacted with AtBI-1. ScFAH1 is a sphingolipid fatty acid 2-hydroxylase localized in the ER membrane. In contrast, AtFAH1 and AtFAH2, which are functional ScFAH1 homologues in Arabidopsis, had no Cb5-like domain, and instead interacted with AtCb5 in plants. These results suggest that AtBI-1 interacts with AtFAHs via AtCb5 in plant cells. Furthermore, the overexpression of AtBI-1 increased the level of 2-hydroxy fatty acids in Arabidopsis, indicating that AtBI-1 is involved in fatty acid 2-hydroxylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocromos b5/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/classificação , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Teste de Complementação Genética , Hidroxilação , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
J Exp Bot ; 61(13): 3813-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20591898

RESUMO

Nicotinamide adenine dinucleotide (NAD) and its derivative nicotinamide adenine dinucleotide phosphate (NADP) are indispensable co-factors in broad-spectrum metabolic events for the maintenance of cellular homeostasis in all living organisms. In this study, the cellular expression levels of NAD biosynthesis genes in Arabidopsis were investigated. A very high expression of nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) was observed in the differentiated stomatal guard cells of the leaf surface. Transcriptional analysis confirmed that several genes in the biosynthesis pathway were also highly expressed in stomatal guard cells. In fact, NAD and NADP metabolisms were investigated during stomatal movement. Importantly, the generation of phytohormone ABA-induced reactive oxygen species, which acts as a signal for stomatal closure, was accompanied by markedly decreased levels of NAD. The ABA-induced oxidative stress caused stomatal cell death in the nmnat mutant. Furthermore, stomata partially lost their ability to close leading to drought susceptibility. The stomata were less responsive to opening cues as well. These results indicate that NAD biosynthesis is involved in protecting guard cells from ABA-induced local oxidative stress via the regulation of NMNAT activity. In this study, it is demonstrated that NMNAT is essential for the maintenance of NAD homeostasis enabling sustainable stomatal movement.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , NAD/biossíntese , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/enzimologia , Arabidopsis/genética , Desidratação , NAD/metabolismo , Estresse Oxidativo/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA