Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 58(1): 123-33, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25773600

RESUMO

Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes. Interestingly, atfs-1 was required to limit the accumulation of OXPHOS transcripts during mitochondrial stress, which required accumulation of ATFS-1 in the nucleus and mitochondria. Because balanced ATFS-1 accumulation promoted OXPHOS complex assembly and function, our data suggest that ATFS-1 stimulates respiratory recovery by fine-tuning OXPHOS expression to match the capacity of the suboptimal protein-folding environment in stressed mitochondria, while simultaneously increasing proteostasis capacity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , Genoma Mitocondrial , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Ciclo do Ácido Cítrico/genética , DNA Mitocondrial/genética , Genoma Helmíntico , Mitocôndrias/genética , Dados de Sequência Molecular , Fosforilação Oxidativa , Dobramento de Proteína , Estabilidade Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica , Resposta a Proteínas não Dobradas
2.
Gut ; 69(6): 1039-1052, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31542774

RESUMO

OBJECTIVE: Genomic structural variations (SVs) causing rewiring of cis-regulatory elements remain largely unexplored in gastric cancer (GC). To identify SVs affecting enhancer elements in GC (enhancer-based SVs), we integrated epigenomic enhancer profiles revealed by paired-end H3K27ac ChIP-sequencing from primary GCs with tumour whole-genome sequencing (WGS) data (PeNChIP-seq/WGS). DESIGN: We applied PeNChIP-seq to 11 primary GCs and matched normal tissues combined with WGS profiles of >200 GCs. Epigenome profiles were analysed alongside matched RNA-seq data to identify tumour-associated enhancer-based SVs with altered cancer transcription. Functional validation of candidate enhancer-based SVs was performed using CRISPR/Cas9 genome editing, chromosome conformation capture assays (4C-seq, Capture-C) and Hi-C analysis of primary GCs. RESULTS: PeNChIP-seq/WGS revealed ~150 enhancer-based SVs in GC. The majority (63%) of SVs linked to target gene deregulation were associated with increased tumour expression. Enhancer-based SVs targeting CCNE1, a key driver of therapy resistance, occurred in 8% of patients frequently juxtaposing diverse distal enhancers to CCNE1 proximal regions. CCNE1-rearranged GCs were associated with high CCNE1 expression, disrupted CCNE1 topologically associating domain (TAD) boundaries, and novel TAD interactions in CCNE1-rearranged primary tumours. We also observed IGF2 enhancer-based SVs, previously noted in colorectal cancer, highlighting a common non-coding genetic driver alteration in gastric and colorectal malignancies. CONCLUSION: Integrated paired-end NanoChIP-seq and WGS of gastric tumours reveals tumour-associated regulatory SV in regions associated with both simple and complex genomic rearrangements. Genomic rearrangements may thus exploit enhancer-hijacking as a common mechanism to drive oncogene expression in GC.


Assuntos
Adenocarcinoma/metabolismo , Ciclina E/metabolismo , Elementos Facilitadores Genéticos/genética , Fator de Crescimento Insulin-Like II/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Variação Estrutural do Genoma/genética , Humanos , Neoplasias Gástricas/genética , Sequenciamento Completo do Genoma
3.
Nature ; 516(7531): 414-7, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25274306

RESUMO

Metazoans identify and eliminate bacterial pathogens in microbe-rich environments such as the intestinal lumen; however, the mechanisms are unclear. Host cells could potentially use intracellular surveillance or stress response programs to detect pathogens that target monitored cellular activities and then initiate innate immune responses. Mitochondrial function is evaluated by monitoring mitochondrial protein import efficiency of the transcription factor ATFS-1, which mediates the mitochondrial unfolded protein response (UPR(mt)). During mitochondrial stress, mitochondrial import is impaired, allowing ATFS-1 to traffic to the nucleus where it mediates a transcriptional response to re-establish mitochondrial homeostasis. Here we examined the role of ATFS-1 in Caenorhabditis elegans during pathogen exposure, because during mitochondrial stress ATFS-1 induced not only mitochondrial protective genes but also innate immune genes that included a secreted lysozyme and anti-microbial peptides. Exposure to the pathogen Pseudomonas aeruginosa caused mitochondrial dysfunction and activation of the UPR(mt). C. elegans lacking atfs-1 were susceptible to P. aeruginosa, whereas hyper-activation of ATFS-1 and the UPR(mt) improved clearance of P. aeruginosa from the intestine and prolonged C. elegans survival in a manner mainly independent of known innate immune pathways. We propose that ATFS-1 import efficiency and the UPR(mt) is a means to detect pathogens that target mitochondria and initiate a protective innate immune response.


Assuntos
Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Mitocôndrias/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Pseudomonas aeruginosa/fisiologia , Estresse Fisiológico/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 8(6): e1002760, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719267

RESUMO

Cells respond to defects in mitochondrial function by activating signaling pathways that restore homeostasis. The mitochondrial peptide exporter HAF-1 and the bZip transcription factor ATFS-1 represent one stress response pathway that regulates the transcription of mitochondrial chaperone genes during mitochondrial dysfunction. Here, we report that GCN-2, an eIF2α kinase that modulates cytosolic protein synthesis, functions in a complementary pathway to that of HAF-1 and ATFS-1. During mitochondrial dysfunction, GCN-2-dependent eIF2α phosphorylation is required for development as well as the lifespan extension observed in Caenorhabditis elegans. Reactive oxygen species (ROS) generated from dysfunctional mitochondria are required for GCN-2-dependent eIF2α phosphorylation but not ATFS-1 activation. Simultaneous deletion of ATFS-1 and GCN-2 compounds the developmental defects associated with mitochondrial stress, while stressed animals lacking GCN-2 display a greater dependence on ATFS-1 and stronger induction of mitochondrial chaperone genes. These findings are consistent with translational control and stress-dependent chaperone induction acting in complementary arms of the UPR(mt).


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitocôndrias , Biossíntese de Proteínas , Fatores de Transcrição , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Chaperonas Moleculares , Fosforilação , Biossíntese de Proteínas/genética , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
Biochim Biophys Acta ; 1833(2): 410-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22445420

RESUMO

Mitochondria are compartmentalized organelles essential for numerous cellular functions including ATP generation, iron-sulfur cluster biogenesis, nucleotide and amino acid metabolism as well as apoptosis. To promote biogenesis and proper function, mitochondria have a dedicated repertoire of molecular chaperones to facilitate protein folding and quality control proteases to degrade those proteins that fail to fold correctly. Mitochondrial protein folding is challenged by the complex organelle architecture, the deleterious effects of electron transport chain-generated reactive oxygen species and the mitochondrial genome's susceptibility to acquiring mutations. In response to the accumulation of unfolded or misfolded proteins beyond the organelle's chaperone capacity, cells mount a mitochondrial unfolded protein response (UPR(mt)). The UPR(mt) is a mitochondria-to-nuclear signal transduction pathway resulting in the induction of mitochondrial protective genes including mitochondrial molecular chaperones and proteases to re-establish protein homeostasis within the mitochondrial protein-folding environment. Here, we review the current understanding of UPR(mt) signal transduction and the impact of the UPR(mt) on diseased cells. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Transdução de Sinais
6.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810256

RESUMO

SETD2, a H3K36 trimethyltransferase, is the most frequently mutated epigenetic modifier in lung adenocarcinoma, with a mutation frequency of approximately 9%. However, how SETD2 loss of function promotes tumorigenesis remains unclear. Using conditional Setd2-KO mice, we demonstrated that Setd2 deficiency accelerated the initiation of KrasG12D-driven lung tumorigenesis, increased tumor burden, and significantly reduced mouse survival. An integrated chromatin accessibility and transcriptome analysis revealed a potentially novel tumor suppressor model of SETD2 in which SETD2 loss activates intronic enhancers to drive oncogenic transcriptional output, including the KRAS transcriptional signature and PRC2-repressed targets, through regulation of chromatin accessibility and histone chaperone recruitment. Importantly, SETD2 loss sensitized KRAS-mutant lung cancer to inhibition of histone chaperones, the FACT complex, or transcriptional elongation both in vitro and in vivo. Overall, our studies not only provide insight into how SETD2 loss shapes the epigenetic and transcriptional landscape to promote tumorigenesis, but they also identify potential therapeutic strategies for SETD2 mutant cancers.


Assuntos
Cromatina , Histona-Lisina N-Metiltransferase , Neoplasias Pulmonares , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica , Histona-Lisina N-Metiltransferase/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Nat Cell Biol ; 25(5): 765-777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095322

RESUMO

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genômica , Neoplasias Renais/metabolismo , NF-kappa B/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
8.
Nat Cancer ; 3(2): 188-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115713

RESUMO

SETD2 is a histone H3 lysine 36 (H3K36) trimethyltransferase that is mutated with high prevalence (13%) in clear cell renal cell carcinoma (ccRCC). Genomic profiling of primary ccRCC tumors reveals a positive correlation between SETD2 mutations and metastasis. However, whether and how SETD2 loss promotes metastasis remains unclear. In this study, we used a SETD2-mutant (SETD2MT) metastatic ccRCC human-derived cell line and xenograft models and showed that H3K36me3 restoration greatly reduced distant metastases of ccRCC in mice in a matrix metalloproteinase 1 (MMP1)-dependent manner. An integrated multiomics analysis using assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation-sequencing (ChIP-seq) and RNA sequencing (RNA-seq) established a tumor suppressor model in which loss of SETD2-mediated H3K36me3 activates enhancers to drive oncogenic transcriptional output through regulation of chromatin accessibility. Furthermore, we uncovered mechanism-based therapeutic strategies for SETD2-deficient cancer through the targeting of specific histone chaperone complexes, including ASF1A/ASF1B and SPT16. Overall, SETD2 loss creates a permissive epigenetic landscape for cooperating oncogenic drivers to amplify transcriptional output, providing unique therapeutic opportunities.


Assuntos
Carcinoma de Células Renais , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Renais , Animais , Carcinogênese/genética , Carcinoma de Células Renais/genética , Proteínas de Ciclo Celular/genética , Epigênese Genética , Feminino , Chaperonas de Histonas/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Neoplasias Renais/genética , Masculino , Camundongos , Chaperonas Moleculares/genética
9.
Cancer Res ; 82(14): 2538-2551, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583999

RESUMO

Mutations in the DNA mismatch repair gene MSH2 are causative of microsatellite instability (MSI) in multiple cancers. Here, we discovered that besides its well-established role in DNA repair, MSH2 exerts a novel epigenomic function in gastric cancer. Unbiased CRISPR-based mass spectrometry combined with genome-wide CRISPR functional screening revealed that in early-stage gastric cancer MSH2 genomic binding is not randomly distributed but rather is associated specifically with tumor-associated super-enhancers controlling the expression of cell adhesion genes. At these loci, MSH2 genomic binding was required for chromatin rewiring, de novo enhancer-promoter interactions, maintenance of histone acetylation levels, and regulation of cell adhesion pathway expression. The chromatin function of MSH2 was independent of its DNA repair catalytic activity but required MSH6, another DNA repair gene, and recruitment to gene loci by the SWI/SNF chromatin remodeler SMARCA4/BRG1. Loss of MSH2 in advanced gastric cancers was accompanied by deficient cell adhesion pathway expression, epithelial-mesenchymal transition, and enhanced tumorigenesis in vitro and in vivo. However, MSH2-deficient gastric cancers also displayed addiction to BAZ1B, a bromodomain-containing family member, and consequent synthetic lethality to bromodomain and extraterminal motif (BET) inhibition. Our results reveal a role for MSH2 in gastric cancer epigenomic regulation and identify BET inhibition as a potential therapy in MSH2-deficient gastric malignancies. SIGNIFICANCE: DNA repair protein MSH2 binds and regulates cell adhesion genes by enabling enhancer-promoter interactions, and loss of MSH2 causes deficient cell adhesion and bromodomain and extraterminal motif inhibitor synthetic lethality in gastric cancer.


Assuntos
Reparo de Erro de Pareamento de DNA , Neoplasias Gástricas , Adesão Celular/genética , Cromatina/genética , DNA Helicases/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Humanos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fatores de Transcrição/genética
10.
Apoptosis ; 13(6): 811-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18463984

RESUMO

The toxic metal cadmium is linked to a series of degenerative disorders in humans, in which Cd-induced programmed cell death (apoptosis) may play a role. The yeast, Saccharomyces cerevisiae, provides a valuable model for elucidating apoptosis mechanisms, and this study extends that capability to Cd-induced apoptosis. We demonstrate that S. cerevisiae undergoes a glucose-dependent, programmed cell death in response to low cadmium concentrations, which is initiated within the first hour of Cd exposure. The response was associated with induction of the yeast caspase, Yca1p, and was abolished in a yca1Delta mutant. Cadmium-dependent apoptosis was also suppressed in a gsh1Delta mutant, indicating a requirement for glutathione. Other apoptotic markers, including sub-G(1) DNA fragmentation and hyper-polarization of mitochondrial membranes, were also evident among Cd-exposed cells. These responses were not distributed uniformly throughout the cell population, but were restricted to a subset of cells. This apoptotic subpopulation also exhibited markedly elevated levels of intracellular reactive oxygen species (ROS). The heightened ROS levels alone were not sufficient to induce apoptosis. These findings highlight several new perspectives to the mechanism of Cd-dependent apoptosis and its phenotypic heterogeneity, while opening up future analyses to the power of the yeast model system.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/farmacologia , Caspases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Caspases/deficiência , Permeabilidade da Membrana Celular/efeitos dos fármacos , Indução Enzimática , Glutationa/deficiência , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mutação , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética
12.
Mol Cell Oncol ; 4(4): e1342747, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28868352

RESUMO

Mutations within chromatin modulating protein complexes have dominated the novel cancer gene landscape. However, little is known about how individual aberrations contribute to cancer formation. A novel Pbrm1 kidney cancer mouse model examining the role of Pbrm1 provides much needed clue concerning how SWI/SNF complexes might function as tumor suppressors.

13.
JCI Insight ; 2(12)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614790

RESUMO

Chromophobe renal cell carcinoma (chRCC) typically shows ~7 chromosome losses (1, 2, 6, 10, 13, 17, and 21) and ~31 exonic somatic mutations, yet carries ~5%-10% metastatic incidence. Since extensive chromosomal losses can generate proteotoxic stress and compromise cellular proliferation, it is intriguing how chRCC, a tumor with extensive chromosome losses and a low number of somatic mutations, can develop lethal metastases. Genomic features distinguishing metastatic from nonmetastatic chRCC are unknown. An integrated approach, including whole-genome sequencing (WGS), targeted ultradeep cancer gene sequencing, and chromosome analyses (FACETS, OncoScan, and FISH), was performed on 79 chRCC patients including 38 metastatic (M-chRCC) cases. We demonstrate that TP53 mutations (58%), PTEN mutations (24%), and imbalanced chromosome duplication (ICD, duplication of ≥ 3 chromosomes) (25%) were enriched in M-chRCC. Reconstruction of the subclonal composition of paired primary-metastatic chRCC tumors supports the role of TP53, PTEN, and ICD in metastatic evolution. Finally, the presence of these 3 genomic features in primary tumors of both The Cancer Genome Atlas kidney chromophobe (KICH) (n = 64) and M-chRCC (n = 35) cohorts was associated with worse survival. In summary, our study provides genomic insights into the metastatic progression of chRCC and identifies TP53 mutations, PTEN mutations, and ICD as high-risk features.

14.
Cell Rep ; 18(12): 2893-2906, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329682

RESUMO

PBRM1 is the second most commonly mutated gene after VHL in clear cell renal cell carcinoma (ccRCC). However, the biological consequences of PBRM1 mutations for kidney tumorigenesis are unknown. Here, we find that kidney-specific deletion of Vhl and Pbrm1, but not either gene alone, results in bilateral, multifocal, transplantable clear cell kidney cancers. PBRM1 loss amplified the transcriptional outputs of HIF1 and STAT3 incurred by Vhl deficiency. Analysis of mouse and human ccRCC revealed convergence on mTOR activation, representing the third driver event after genetic inactivation of VHL and PBRM1. Our study reports a physiological preclinical ccRCC mouse model that recapitulates somatic mutations in human ccRCC and provides mechanistic and therapeutic insights into PBRM1 mutated subtypes of human ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Proteínas HMGB/metabolismo , Neoplasias Renais/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas de Ligação a DNA , Regulação para Baixo/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas HMGB/deficiência , Humanos , Hidronefrose/genética , Hidronefrose/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Integrases/metabolismo , Rim/metabolismo , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Fosforilação Oxidativa , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transcrição Gênica
15.
Cell Rep ; 14(7): 1581-1589, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26876169

RESUMO

Pathogens attack host cells by deploying toxins that perturb core host processes. Recent findings from the nematode C. elegans and other metazoans indicate that surveillance or "effector-triggered" pathways monitor functioning of these core processes and mount protective responses when they are perturbed. Despite a growing number of examples of surveillance immunity, the signaling components remain poorly defined. Here, we show that CEBP-2, the C. elegans ortholog of mammalian CCAAT-enhancer-binding protein gamma, is a key player in surveillance immunity. We show that CEBP-2 acts together with the bZIP transcription factor ZIP-2 in the protective response to translational block by P. aeruginosa Exotoxin A as well as perturbations of other processes. CEBP-2 serves to limit pathogen burden, promote survival upon P. aeruginosa infection, and also promote survival upon Exotoxin A exposure. These findings may have broad implications for the mechanisms by which animals sense pathogenic attack and mount protective responses.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Proteínas Quinases Associadas com Morte Celular/imunologia , Interações Hospedeiro-Patógeno , Vigilância Imunológica , Pseudomonas aeruginosa/crescimento & desenvolvimento , ADP Ribose Transferases/biossíntese , ADP Ribose Transferases/imunologia , Animais , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Proteínas Estimuladoras de Ligação a CCAAT/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/genética , Exotoxinas/biossíntese , Exotoxinas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Pseudomonas aeruginosa/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Fatores de Virulência/biossíntese , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
16.
Science ; 337(6094): 587-90, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22700657

RESUMO

To better understand the response to mitochondrial dysfunction, we examined the mechanism by which ATFS-1 (activating transcription factor associated with stress-1) senses mitochondrial stress and communicates with the nucleus during the mitochondrial unfolded protein response (UPR(mt)) in Caenorhabditis elegans. We found that the key point of regulation is the mitochondrial import efficiency of ATFS-1. In addition to a nuclear localization sequence, ATFS-1 has an N-terminal mitochondrial targeting sequence that is essential for UPR(mt) repression. Normally, ATFS-1 is imported into mitochondria and degraded. However, during mitochondrial stress, we found that import efficiency was reduced, allowing a percentage of ATFS-1 to accumulate in the cytosol and traffic to the nucleus. Our results show that cells monitor mitochondrial import efficiency via ATFS-1 to coordinate the level of mitochondrial dysfunction with the protective transcriptional response.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Transporte Ativo do Núcleo Celular , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA