Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Adv Exp Med Biol ; 1081: 259-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288714

RESUMO

One of the major damaging factors for living organisms experiencing water insufficiency is oxidative stress. Loss of water causes a dramatic increase in the production of reactive oxygen species (ROS). Thus, the ability for some organisms to survive almost complete desiccation (called anhydrobiosis) is tightly related to the ability to overcome extraordinary oxidative stress. The most complex anhydrobiotic organism known is the larva of the chironomid Polypedilum vanderplanki. Its antioxidant system shows remarkable features, such as an expansion of antioxidant genes, their overexpression, as well as the absence or low expression of enzymes required for the synthesis of ascorbate and glutathione and their antioxidant function. In this chapter, we summarize existing data about the antioxidant system of this insect, which is able to cope with substantial oxidative damage, even in an intracellular environment that is severely disturbed due to water loss.


Assuntos
Aclimatação , Antioxidantes/metabolismo , Chironomidae/metabolismo , Estresse Oxidativo , Água/metabolismo , Animais , Chironomidae/embriologia , Chironomidae/genética , Desidratação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo , Estado de Hidratação do Organismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Mediators Inflamm ; 2017: 4029641, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804220

RESUMO

Extracellular bacterial ribonucleases such as binase from Bacillus pumilus possess cytotoxic activity against tumor cells with a potential for clinical application. Moreover, they may induce activation of tumor-derived macrophages either into the M1-phenotype with well-documented functions in the regulation of the antitumor immune response or into M2-macrophages that may stimulate tumor growth, metastasis, and angiogenesis. In this study, binase or endogenous RNase1 (but not RNA or short oligonucleotides) stimulated the expression of activated NF-κB p65 subunit in macrophages. Since no changes in MyD88 and TRIF adaptor protein expression were observed, toll-like receptors may not be involved in RNase-related NF-κB pathway activation. In addition, short exposure (0.5 hr) to binase induced the release of cytokines such as IL-6, МСР-1, or TNF-α (but not IL-4 and IL-10), indicative for the polarization into antitumor M1-macrophages. Thus, we revealed increased expression of activated NF-κB p65 subunit in macrophages upon stimulation by binase and RNase1, but not RNA or short oligonucleotides.


Assuntos
Bacillus pumilus/enzimologia , Proteínas de Bactérias/farmacologia , Endorribonucleases/farmacologia , Macrófagos/efeitos dos fármacos , Ribonucleases/farmacologia , Células A549 , Animais , Linhagem Celular , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
ACS Appl Mater Interfaces ; 15(47): 54996-55008, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962902

RESUMO

Memristive devices, known for their nonvolatile resistive switching, are promising components for next-generation neuromorphic computing systems, which mimic the brain's neural architecture. Specifically, these devices are well-suited for functioning as artificial synapses due to their analogue tunability and low energy consumption. However, the improvement of their performance and reliability remains a pressing challenge. In this study, we report the development and comprehensive characterization of memristive devices based on a parylene-MoOx (PPX-Mo) nanocomposite layer, which exhibit improved characteristics over their parylene-based counterparts: lower switching voltage and energy, smaller dispersion, and better resistive plasticity. A robust statistical analysis identified the optimal synthesis parameters for these devices, providing valuable insights for future device optimization. The most probable resistive switching mechanism of the devices is proposed. By successfully integrating these memristors into a neuromorphic computing model and showcasing their scalability in crossbar geometry, we demonstrate their potential as functional artificial synapses. The results obtained from this study can be useful for the development of hardware-brain-inspired computational systems.

4.
Biology (Basel) ; 11(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35453687

RESUMO

Anhydrobiosis, an adaptive ability to withstand complete desiccation, in the nonbiting midge Polypedilum vanderplanki, is associated with the emergence of new multimember gene families, including a group of 27 genes of late embryogenesis abundant (LEA) proteins (PvLea). To obtain new insights into the possible functional specialization of these genes, we investigated the expression and localization of PvLea genes in a P. vanderplanki-derived cell line (Pv11), capable of anhydrobiosis. We confirmed that all but two PvLea genes identified in the genome of P. vanderplanki are expressed in Pv11 cells. Moreover, PvLea genes are induced in Pv11 cells in response to anhydrobiosis-inducing trehalose treatment in a manner highly similar to the larvae of P. vanderplanki during the real induction of anhydrobiosis. Then, we expanded our previous data on PvLEA proteins localization in mammalian cells that were obtained using C-terminal fusions of PvLEA proteins and green fluorescent protein (GFP). We investigated PvLEA localization using N- and C-terminal fusions with GFP in Pv11 cells and the Sf9 insect cell line. We observed an inconsistency of PvLEA localization between different fusion types and different cell cultures, that needs to be taken into account when using PvLEA in the engineering of anhydrobiotic cell lines.

5.
Sci Rep ; 10(1): 11633, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669703

RESUMO

Larvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis. While several such clusters represent orthologues of known genes, there is a distinct set of genes unique for P. vanderplanki. These include Lea-Island-Located (LIL) genes with no known orthologues except two of LEA genes of P. vanderplanki, PvLea1 and PvLea3. However, PvLIL proteins lack typical features of LEA such as the state of intrinsic disorder, hydrophilicity and characteristic LEA_4 motif. They possess four to five transmembrane domains each and we confirmed membrane targeting for three PvLILs. Conserved amino acids in PvLIL are located in transmembrane domains or nearby. PvLEA1 and PvLEA3 proteins are chimeras combining LEA-like parts and transmembrane domains, shared with PvLIL proteins. We have found that PvLil genes are highly upregulated during anhydrobiosis induction both in larvae of P. vanderplanki and P. vanderplanki-derived cultured cell line, Pv11. Thus, PvLil are a new intriguing group of genes that are likely to be associated with anhydrobiosis due to their common origin with some LEA genes and their induction during anhydrobiosis.


Assuntos
Membrana Celular/metabolismo , Chironomidae/fisiologia , Desidratação , Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Análise por Conglomerados , Simulação por Computador , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Larva/fisiologia , Família Multigênica , Filogenia , Domínios Proteicos , RNA-Seq
6.
Sci Rep ; 9(1): 10800, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346245

RESUMO

In this paper, the resistive switching and neuromorphic behaviour of memristive devices based on parylene, a polymer both low-cost and safe for the human body, is comprehensively studied. The Metal/Parylene/ITO sandwich structures were prepared by means of the standard gas phase surface polymerization method with different top active metal electrodes (Ag, Al, Cu or Ti of ~500 nm thickness). These organic memristive devices exhibit excellent performance: low switching voltage (down to 1 V), large OFF/ON resistance ratio (up to 104), retention (≥104 s) and high multilevel resistance switching (at least 16 stable resistive states in the case of Cu electrodes). We have experimentally shown that parylene-based memristive elements can be trained by a biologically inspired spike-timing-dependent plasticity (STDP) mechanism. The obtained results have been used to implement a simple neuromorphic network model of classical conditioning. The described advantages allow considering parylene-based organic memristors as prospective devices for hardware realization of spiking artificial neuron networks capable of supervised and unsupervised learning and suitable for biomedical applications.

7.
Sci Rep ; 8(1): 17941, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560869

RESUMO

The larvae of the African midge, Polypedilum vanderplanki, can enter an ametabolic state called anhydrobiosis to overcome fatal desiccation stress. The Pv11 cell line, derived from P. vanderplanki embryo, shows desiccation tolerance when treated with trehalose before desiccation and resumes proliferation after rehydration. However, the molecular mechanisms of this desiccation tolerance remain unknown. Here, we performed high-throughput CAGE-seq of mRNA and a differentially expressed gene analysis in trehalose-treated, desiccated, and rehydrated Pv11 cells, followed by gene ontology analysis of the identified differentially expressed genes. We detected differentially expressed genes after trehalose treatment involved in various stress responses, detoxification of harmful chemicals, and regulation of oxidoreduction that were upregulated. In the desiccation phase, L-isoaspartyl methyltransferase and heat shock proteins were upregulated and ribosomal proteins were downregulated. Analysis of differentially expressed genes during rehydration supported the notion that homologous recombination, nucleotide excision repair, and non-homologous recombination were involved in the recovery process. This study provides initial insights into the molecular mechanisms underlying the extreme desiccation tolerance of Pv11 cells.


Assuntos
Adaptação Biológica/genética , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Transcriptoma , Animais , Linhagem Celular , Biologia Computacional/métodos , Reparo do DNA , Desidratação , Dessecação , Ontologia Genética , Insetos/fisiologia , Larva , Trealose/metabolismo
8.
Sci Rep ; 7(1): 6540, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747745

RESUMO

Desiccation-tolerant cultured cells Pv11 derived from the anhydrobiotic midge embryo endure complete desiccation in an ametabolic state and resume their metabolism after rehydration. These features led us to develop a novel dry preservation technology for enzymes as it was still unclear whether Pv11 cells could preserve an exogenous enzyme in the dry state. This study shows that Pv11 cells protect an exogenous desiccation-sensitive enzyme, luciferase (Luc), preserving the enzymatic activity even after dry storage for 372 days at room temperature. A process including preincubation with trehalose, dehydration, storage, and rehydration allowed Pv11 (Pv11-Luc) cells stably expressing luciferase to survive desiccation and still emit luminescence caused by luciferase after rehydration. Luminescence produced by luciferase in Pv11-Luc cells after rehydration did not significantly decrease in presence of a translation inhibitor, showing that the activity did not derive from de novo enzyme synthesis following the resumption of cell metabolism. These findings indicate that the surviving Pv11 cells almost completely protect luciferase during desiccation. Lacking of the preincubation step resulted in the loss of luciferase activity after rehydration. We showed that preincubation with trehalose associated to induction of desiccation tolerance-related genes in Pv11 cells allowed effective in vivo preservation of enzymes in the dry state.


Assuntos
Desidratação , Luciferases/metabolismo , Substâncias Luminescentes/metabolismo , Preservação Biológica/métodos , Temperatura , Animais , Linhagem Celular , Chironomidae
9.
Stem Cells Int ; 2016: 3604203, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597869

RESUMO

Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation.

10.
Toxicon ; 92: 54-9, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25301481

RESUMO

The cytotoxic effects of Bacillus intermedius RNase (binase) towards ovarian cancer cells (SKOV3 and OVCAR5) were studied in comparison to normal ovarian epithelial cells (HOSE1 and HOSE2). Binase decreased viability and induced the selective apoptosis of ovarian cancer cells. The apoptosis rate was 50% in SKOV3 and 48% in OVCAR5 cells after 24 h of binase treatment (50 µg/ml). Binase-induced apoptosis in these cell lines was accompanied by caspase-3 activation and poly(ADP-ribose) polymerase fragmentation. Normal ovarian epithelial cells were not affected by binase, except for a slight decrease of HOSE2 cell viability and the appearance of traces of activated caspase-3, but not the poly(ADP-ribose) polymerase 85-kDA fragment. Binase did not induce alteration of EZH2 (enhancer of zeste-homolog-2) protein expression neither, in tumor nor in normal cells. In conclusion, selective binase-induced cell death and apoptosis via poly(ADP-ribose) polymerase fragmentation may serve as a new treatment option against ovarian cancer progression.


Assuntos
Apoptose/efeitos dos fármacos , Endorribonucleases/farmacologia , Neoplasias Ovarianas/fisiopatologia , Apoptose/fisiologia , Células Cultivadas/efeitos dos fármacos , Endorribonucleases/isolamento & purificação , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Estatísticas não Paramétricas , Células Tumorais Cultivadas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA