Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurovirol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717678

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. One of the basic mechanisms in this disease is the autoimmune response against the myelin sheet leading to axonal damage. There is strong evidence showing that this response is regulated by both genetic and environmental factors. In addition, the role of viruses has been extensively studied, especially in the case of human endogenous retroviruses (HERVs). However, although several associations with MS susceptibility, especially in the case of HERV-W family have been observed, the pathogenic mechanisms have remained enigmatic. To clarify these HERV-mediated mechanisms as well as the responsible HERV-W loci, we utilized RNA sequencing data obtained from the white matter of the brain of individuals with and without MS. CIBERSORTx tool was applied to estimate the proportions of neuronal, glial, and endothelial cells in the brain. In addition, the transcriptional activity of 215 HERV-W loci were analyzed. The results indicated that 65 HERV-W loci had detectable expression, of which 14 were differentially expressed between MS and control samples. Of these, 12 HERV-W loci were upregulated in MS. Expression levels of the 8 upregulated HERV-W loci had significant negative correlation with estimated oligodendrocyte proportions, suggesting that they are associated with the dynamics of oligodendrocyte generation and/or maintenance. Furthermore, Gene Set Enrichment Analysis (GSEA) results indicated that expression levels of three upregulated HERV-W loci: 2p16.2, 2q13, and Xq13.3, are associated with suppression of oligodendrocyte development and myelination. Taken together, these data suggest new HERV-W loci candidates that might take part in MS pathogenesis.

2.
Immun Ageing ; 19(1): 45, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209092

RESUMO

Immune cells infiltrating the central nervous system (CNS) are involved in the defense against invading microbes as well as in the pathogenesis of neuroinflammatory diseases. In these conditions, the presence of several types of immune and inflammatory cells have been demonstrated. However, some studies have also reported low amounts of immune cells that have been detected in the CNS of healthy individuals, but the cell types present have not been systematically analyzed. To do this, we now used brain samples from The Genotype- Tissue Expression (GTEx) project to analyze the relative abundance of 22 infiltrating leukocyte types using a digital cytometry tool (CIBERSORTx). To characterize cell proportions in different parts of the CNS, samples from 13 different anatomic brain regions were used. The data obtained demonstrated that several leukocyte types were present in the CNS. Six leukocyte types (CD4 memory resting T cells, M0 macrophages, plasma cells, CD8 T cells, CD4 memory activated T cells, and monocytes) were present with a proportion higher than 0.05, i.e. 5%. These six cell types were present in most brain regions with only insignificant variation. A consistent association with age was seen with monocytes, CD8 T cells, and follicular helper T cells. Taken together, these data show that several infiltrating immune cell types are present in the non-diseased CNS tissue and that the proportions of infiltrating cells are affected by age in a manner that is consistent with literature on immunosenecence and inflammaging.

3.
Immun Ageing ; 19(1): 15, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279192

RESUMO

BACKGROUND: As we age, the functioning of the human immune system declines. The results of this are increases in morbidity and mortality associated with infectious diseases, cancer, cardiovascular disease, and neurodegenerative disease in elderly individuals, as well as a weakened vaccination response. The aging of the immune system is thought to affect and be affected by the human virome, the collection of all viruses present in an individual. Persistent viral infections, such as those caused by certain herpesviruses, can be present in an individual for long periods of time without any overt pathology, yet are associated with disease in states of compromised immune function. To better understand the effects on human health of such persistent viral infections, we must first understand how the human virome changes with age. We have now analyzed the composition of the whole blood virome of 317 individuals, 21-70 years old, using a metatranscriptomic approach. Use of RNA sequencing data allows for the unbiased detection of RNA viruses and active DNA viruses. RESULTS: The data obtained showed that Epstein-Barr virus (EBV) was the most frequently expressed virus, with other detected viruses being herpes simplex virus 1, human cytomegalovirus, torque teno viruses, and papillomaviruses. Of the 317 studied blood samples, 68 (21%) had EBV expression, whereas the other detected viruses were only detected in at most 6 samples (2%). We therefore focused on EBV in our further analyses. Frequency of EBV detection, relative EBV RNA abundance and the genetic diversity of EBV was not significantly different between age groups (21-59 and 60-70 years old). No significant correlation was seen between EBV RNA abundance and age. Deconvolution analysis revealed a significant difference in proportions of activated dendritic cells, macrophages M1, and activated mast cells between EBV expression positive and negative individuals. CONCLUSIONS: As it is likely that the EBV RNA quantified in this work is derived from reactivation of the latent EBV virus, these data suggest that age does not affect the rate of reactivation nor the genetic landscape of EBV. These findings offer new insight on the genetic diversity of a persistent EBV infection in the long-term.

4.
Immun Ageing ; 17: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435269

RESUMO

BACKGROUND: The human genome contains remnants of ancient retroviral infections called human endogenous retroviruses (HERV). Their expression is often observed in several diseases of autoimmune or inflammatory nature. However, the exact biological mechanisms induced by HERVs are still poorly understood. We have previously shown that several HERVs of the HERV-K (HML-2) family are strongly transcribed in the peripheral blood mononuclear cells (PBMC) derived from young and old individuals. To examine the potential functional consequences of HERV-K (HML-2) expression, we have now analyzed the correlation of its expression with age-associated changes in the transcriptome using gene set enrichment analysis (GSEA). We focused our analysis on the HERV-K (HML-2) provirus at 1q22, also known as ERVK-7. RESULTS: The genes strongly correlating with the expression of HERV-K (HML-2) provirus at 1q22 expression were found to be almost entirely different in young and old individuals. The number of genes strongly correlating (Pearson correlation coefficient ≥ 0.7) with 1q22 expression was 946 genes in the old and 435 in the young, of which only 41 genes correlated strongly in both. Consequently, the related gene ontology (GO) biological processes were different. In the older individuals, many of the highest correlating processes relate to the function of neutrophils. CONCLUSIONS: The results of this work suggest that the biological processes associated with the expression of HERV-K (HML-2) provirus at 1q22 are different in the blood of young and old individuals. Specifically, a strong association was found in the older individuals between neutrophil activity and the expression of the HERV-K (HML-2) provirus at 1q22. These findings offer insight into potential effects of altered HERV expression in older individuals.

5.
Immun Ageing ; 16: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423147

RESUMO

BACKGROUND: Immunosenescence, i.e. the aging-associated decline of the capacity of the immune system, is characterized by several distinct changes in the number and functions of the immune cells. In the case of B cells, the total number of CD19+ B cells is lower in the blood of elderly individuals than in the younger ones. CD19+ B cell population contains several subsets, which are commonly characterized by the presence of CD27 and IgD molecules, i.e. naïve B cells (CD27- IgD+), IgM memory (CD27+ IgD+), switched memory (CD27+ IgD-) and late memory (CD27- IgD-). This late memory, double negative, population represents cells which are nondividing, but are still able to produce inflammatory mediators and in this way maybe contributing to the aging-associated inflammation, inflammaging. Here we have focused on the role of these B cell subsets in elderly individuals, nonagenarians, in the regulation of inflammation and inflammation-associated decline of bodily functions. As the biological aging process demonstrates gender-specific characteristics, the analyses were performed separately in males and female. RESULTS: A subcohort of The Vitality 90+ study (67 nonagenarians, 22/45 males/females and 40 young controls, 13/27 males/females) was used. Flow cytometric analysis indicated that the total percentage of the CD19+ cells was ca. 50% lower in the nonagenarians than in the controls in both genders. The proportions of these four B cell subsets within the CD19+ populations were very similar in young and old individuals. Thus, it seems that the aging-associated decline of the total CD19+ cells affects similarly all these B cell subsets. To analyze the role of these subsets in the regulation of inflammation, the correlation with IL-6 levels was calculated. A significant correlation was observed only with the percentage of CD27- IgD- cells and only in males. As inflammation is associated with aging-associated functional performance and frailty, the correlations with the Barthel index and frailty score was analyzed. Again, only the CD27- IgD- population demonstrated a strong male-specific correlation. CONCLUSIONS: These data show that the CD27- IgD- B cell subset demonstrates a strong pro-inflammatory effect in nonagenarians, which significantly associates with the decline of the bodily functions. However, this phenomenon is only observed in males.

6.
J Pharmacol Exp Ther ; 359(1): 62-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451409

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Glicerídeos/metabolismo , Hipotermia/induzido quimicamente , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Pirazóis/farmacologia , Rimonabanto
7.
Xenobiotica ; 46(1): 14-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26068522

RESUMO

1. Information about the metabolism of compounds is essential in drug discovery and development, risk assessment of chemicals and further development of predictive methods. 2. In vitro and in silico methods were applied to evaluate the metabolic and inhibitory properties of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin with human CYP2A6, mouse CYP2A5 and pig CYP2A19. 3. 6-Methylcoumarin was oxidized to fluorescent 7-hydroxy-6-methylcoumarin by CYP2A6 (Km: 0.64-0.91 µM; Vmax: 0.81-0.89 min(-1)) and by CYP2A5 and CYP2A19. The reaction was almost completely inhibited at 10 µM 7-methylcoumarin in liver microsomes of human and mouse, but in pig only 40% inhibition was obtained with the anti-CYP2A5 antibody or with methoxsalen and pilocarpine. 7-Methylcoumarin was a mechanism-based inhibitor for CYP2A6, but not for the mouse and pig enzymes. 7-Formylcoumarin was a mechanism-based inhibitor for CYP2As of all species. 4. Docking and molecular dynamics simulations of 6-methylcoumarin and 7-methylcoumarin in the active sites of CYP2A6 and CYP2A5 demonstrated a favorable orientation of the 7-position of 6-methylcoumarin towards the heme moiety. Several orientations of 7-methylcoumarin were possible in CYP2A6 and CYP2A5. 5. These results indicate that the active site of CYP2A6 has unique interaction properties for ligands and differs in this respect from CYP2A5 and CYP2A19.


Assuntos
Cumarínicos/farmacologia , Citocromo P-450 CYP2A6/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Animais , Citocromo P-450 CYP2A6/metabolismo , Humanos , Hidroxilação , Concentração Inibidora 50 , Cinética , Camundongos , Modelos Moleculares , Oxirredução , Sus scrofa , Fatores de Tempo
8.
BMC Genomics ; 16: 179, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25888029

RESUMO

BACKGROUND: Changes in DNA methylation are among the mechanisms contributing to the ageing process. We sought to identify ageing-associated DNA methylation changes at single-CpG-site resolution in blood leukocytes and to ensure that the observed changes were not due to differences in the proportions of leukocytes. The association between DNA methylation changes and gene expression levels was also investigated in the same individuals. RESULTS: We identified 8540 high-confidence ageing-associated CpG sites, 46% of which were hypermethylated in nonagenarians. The hypermethylation-associated genes belonged to a common category: they were predicted to be regulated by a common group of transcription factors and were enriched in a related set of GO terms and canonical pathways. Conversely, for the hypomethylation-associated genes only a limited set of GO terms and canonical pathways were identified. Among the 8540 CpG sites associated with ageing, methylation level of 377 sites was also associated with gene expression levels. These genes were enriched in GO terms and canonical pathways associated with immune system functions, particularly phagocytosis. CONCLUSIONS: We find that certain ageing-associated immune-system impairments may be mediated via changes in DNA methylation. The results also imply that ageing-associated hypo- and hypermethylation are distinct processes: hypermethylation could be caused by programmed changes, whereas hypomethylation could be the result of environmental and stochastic processes.


Assuntos
Envelhecimento/genética , Metilação de DNA , Expressão Gênica , Idoso de 80 Anos ou mais , Ilhas de CpG , Feminino , Genoma Humano , Humanos , Masculino , Anotação de Sequência Molecular , Fatores Sexuais
9.
Bioorg Med Chem Lett ; 25(7): 1436-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25752982

RESUMO

Compound 12a (JZP-361) acted as a potent and reversible inhibitor of human recombinant MAGL (hMAGL, IC50=46 nM), and was found to have almost 150-fold higher selectivity over human recombinant fatty acid amide hydrolase (hFAAH, IC50=7.24 µM) and 35-fold higher selectivity over human α/ß-hydrolase-6 (hABHD6, IC50=1.79 µM). Additionally, compound 12a retained H1 antagonistic affinity (pA2=6.81) but did not show cannabinoid receptor activity, when tested at concentrations ⩽ 10 µM. Hence, compound 12a represents a novel dual-acting pharmacological tool possessing both MAGL-inhibitory and antihistaminergic activities.


Assuntos
Inibidores Enzimáticos/farmacologia , Loratadina/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Loratadina/síntese química , Loratadina/química , Modelos Moleculares , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 23(19): 6335-45, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344596

RESUMO

This article describes our systematic approach to exploring the utility of the 1,3,4-oxadiazol-2-one scaffold in the development of ABHD6 inhibitors. Compound 3-(3-aminobenzyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-169, 52) was identified as a potent inhibitor of hABHD6, with an IC50 value of 216 nM. This compound at 10 µM concentration did not inhibit any other endocannabinoid hydrolases, such as FAAH, MAGL and ABHD12, or bind to the cannabinoid receptors (CB1 and CB2). Moreover, in competitive activity-based protein profiling (ABPP), compound 52 (JZP-169) at 10 µM selectively targeted ABHD6 of the serine hydrolases of mouse brain membrane proteome. Reversibility studies indicated that compound 52 inhibited hABHD6 in an irreversible manner. Finally, homology modelling and molecular docking studies were used to gain insights into the binding of compound 52 to the active site of hABHD6.


Assuntos
Inibidores Enzimáticos/química , Monoacilglicerol Lipases/antagonistas & inibidores , Oxidiazóis/química , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/metabolismo , Oxidiazóis/metabolismo , Ligação Proteica , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Serina Proteases/química , Serina Proteases/metabolismo , Relação Estrutura-Atividade
11.
Mol Pharmacol ; 86(5): 522-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25140003

RESUMO

The primary route of inactivation of the endocannabinoid 2-arachidonoylglycerol in the central nervous system is through enzymatic hydrolysis, mainly carried out by monoacylglycerol lipase (MAGL), along with a small contribution by the α/ß-hydrolase domain (ABHD) proteins ABHD6 and ABHD12. Recent methodological progress allowing kinetic monitoring of glycerol liberation has facilitated substrate profiling of the human endocannabinoid hydrolases, and these studies have revealed that the three enzymes have distinct monoacylglycerol substrate and isomer preferences. Here, we have extended this substrate profiling to cover four prostaglandin glycerol esters, namely, 15-deoxy-Δ(12,14)-prostaglandin J2-2-glycerol (15d-PGJ2-G), PGD2-G, PGE2-G, and PGF2 α-G. We found that the three enzymes hydrolyzed the tested substrates, albeit with distinct rates and preferences. Although human ABHD12 (hABHD12) showed only marginal activity toward PGE2-G, hABHD6 preferentially hydrolyzed PGD2-G, and human MAGL (hMAGL) robustly hydrolyzed all four. This was particularly intriguing for MAGL activity toward 15d-PGJ2-G whose hydrolysis rate rivaled that of the best monoacylglycerol substrates. Molecular modeling studies combined with kinetic analysis supported favorable interaction with the hMAGL active site. Long and short MAGL isoforms shared a similar substrate profile, and hMAGL hydrolyzed 15d-PGJ2-G also in living cells. The ability of 15d-PGJ2-G to activate the canonical nuclear factor erythroid 2-related factor (Nrf2) signaling pathway used by 15d-PGJ2 was assessed, and these studies revealed for the first time that 15d-PGJ2 and 15d-PGJ2-G similarly activated Nrf2 signaling as well as transcription of target genes of this pathway. Our study challenges previous claims regarding the ability of MAGL to catalyze PG-G hydrolysis and extend the MAGL substrate profile beyond the classic monoacylglycerols.


Assuntos
Ésteres/metabolismo , Glicerol/metabolismo , Monoacilglicerol Lipases/metabolismo , Prostaglandinas/metabolismo , Domínio Catalítico/fisiologia , Células Cultivadas , Endocanabinoides/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrolases/metabolismo , Hidrólise , Cinética , Monoglicerídeos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
12.
Bioorg Med Chem ; 22(23): 6694-6705, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25282655

RESUMO

The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8-10, while diverse leaving groups are tolerated for FAAH inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Amidas/farmacologia , Amidoidrolases/metabolismo , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperazina , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacologia , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Relação Estrutura-Atividade
13.
Heliyon ; 9(11): e21283, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920490

RESUMO

Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the human genome. RNA expression of individual HERVs has frequently been observed in various pathologic conditions, but some activity can also be seen in healthy individuals, e.g. in the blood. To quantitate the basal expression levels of HERVs in the brain, we now used high-throughput sequencing-based metagenomic analysis to characterize the expression profiles of the HERV-K (HML-2) family proviruses in different brain regions of healthy brain tissue. To this end, RNA-seq data from the Genotype-Tissue Expression (GTEx) project was used. The GTEx project is a public resource to study tissue-specific gene expression and regulation, consisting of a large selection of sequenced samples from different tissues. The GTEx data used in this study consisted of 378 samples taken from 13 brain regions from 55 individuals. The data demonstrated that out of 99 intact proviruses in the family 58 were expressed, but the expression profiles were highly divergent and there were no significant differences in the expression profiles between the various anatomic regions of the brain. It is known that the brain contains a variety of infiltrating immune cells, which are probably of great importance both in the normal defense mechanisms as well as in the various pathogenic processes. Digital cytometry (CIBERSORTx) was used to quantify the proportions of the infiltrating immune cells in the same brain samples. Six most abundant (>5 % of the total population) cell types were observed to be CD4 memory resting T cells, M0 macrophages, plasma cells, CD8 T cells, CD4 memory activated T cells, and monocytes. Analysis of the correlations between the individual HERVs and infiltrating cell types indicated that a cluster of 6 HERVs had a notable correlation signature between T cell type infiltrating cell proportions and HERV RNA expression intensity. The correlations between inflammatory type infiltrating cells were negative or weak. Taken together, these data indicate that the expression of HERVs is associated with a T cell type immunity.

14.
Mol Pharm ; 8(6): 2424-33, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22044162

RESUMO

The human constitutive androstane receptor (CAR, NR1I3) is one of the key regulators of xenobiotic and endobiotic metabolism. The unique properties of human CAR, such as the high constitutive activity and the complexity of signaling, as well as the lack of functional and predictive cell-based assays to study the properties of the receptor, have hindered the discovery of selective human CAR ligands. Here we report a novel human CAR inverse agonist, 1-[(2-methylbenzofuran-3-yl)methyl]-3-(thiophen-2-ylmethyl) urea (S07662), which suppresses human CAR activity, recruits the corepressor NCoR in cell-based assays, and attenuates the phenytoin- and 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO)-induced expression of CYP2B6 mRNA in human primary hepatocytes. The properties of S07662 are also compared with those of known human CAR inverse agonists by using an array of different in vitro and in silico assays. The identified compound S07662 can be used as a chemical tool to study the biological functions of human CAR and also as a starting point for the development of new drugs for various conditions involving the receptor.


Assuntos
Descoberta de Drogas , Compostos de Metilureia/química , Receptores Citoplasmáticos e Nucleares/agonistas , Tiofenos/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Humanos , Isoquinolinas/química , Modelos Moleculares , Simulação de Dinâmica Molecular
15.
Bioorg Med Chem ; 19(2): 939-50, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21215643

RESUMO

Quinoline, isoquinoline, quinoxaline, and quinazoline derivatives were synthesized using microwave-assisted synthesis and their CB1/CB2 receptor activities were determined using the [³5S]GTPγS binding assay. Most of the prepared quinoline, isoquinoline, and quinoxalinyl phenyl amines showed low-potency partial CB2 receptor agonists activity. The most potent CB2 ligand was the 4-morpholinylmethanone derivative (compound 40e) (-log EC50 = 7.8; E(max) = 75%). The isoquinolin-1-yl(3-trifluoromethyl-phenyl)amine (compound 26c) was a high efficacy CB2 agonist (-log EC50 = 5.8; E(max) = 128%). No significant CB1 receptor activation or inactivation was shown in these studies, except 40e, which showed weak CB1 agonist activity (CB1 -log EC50 = 5.0). These ligands serve as novel templates for the development of selective CB2 receptor agonist.


Assuntos
Isoquinolinas/química , Isoquinolinas/síntese química , Micro-Ondas , Morfolinas/síntese química , Quinazolinas/química , Quinolinas/química , Quinoxalinas/química , Receptor CB2 de Canabinoide/agonistas , Isoquinolinas/farmacologia , Morfolinas/química , Morfolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/farmacologia , Quinolinas/síntese química , Quinolinas/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
16.
Exp Gerontol ; 143: 111119, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086079

RESUMO

Plasma contains several bioactive molecules (RNA, DNA, proteins, lipids, and metabolites), which are well preserved in extracellular vesicles, that are involved in many types of cell-to-cell interactions, and are capable of modifying biological processes in recipient cells. To obtain information about the source of mRNA molecules present in the plasma, we analyzed the plasma extracellular RNA (exRNA) of healthy individuals using RNA-sequencing and compared it to that of the peripheral blood mononuclear cell (PBMCs) of the same individual. The resultant data indicates that large proportion of the transcripts in plasma are derived from cell types other than PBMCs. To assess aging-associated changes in the plasma exRNA composition, gene ontology enrichment analysis was performed, revealing a functional decline in biological processes as a result of aging. Additionally, plasma RNA levels were analyzed with differential expression analysis, revealing 10 transcripts with significant aging-associated changes. Thus, it seems that the plasma exRNA is not fully derived from the PBMCs. Instead, other cell types supply RNAs to constitute the plasma exRNA compartment. This was true in both the young and elderly individuals that were tested. Furthermore, the RNA content of the plasma showed significant changes due to aging, affecting important biological processes.


Assuntos
Leucócitos Mononucleares , Transcriptoma , Idoso , Envelhecimento/genética , Humanos , RNA/genética , Análise de Sequência de RNA
17.
Anal Biochem ; 399(1): 132-4, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20005861

RESUMO

Monoglyceride lipase (MGL) is a serine hydrolase that terminates the signaling of the primary endocannabinoid, 2-arachidonoyl glycerol (2-AG). Versatile high-throughput screening methods allowing the testing of MGL inhibitors are rare, thereby limiting the development and analysis of novel inhibitors. Here we describe an improved fluorescence-based technique that is capable of determining time- and dose-dependent inhibition of MGL with one or multiple binding sites and, at the same time, is capable of revealing the reversibility of inhibitor binding in a simple kinetic assay format. Known reference compounds as well as novel inhibitors, such as JZL184 and CAY10499, were evaluated for their MGL-binding properties and potency.


Assuntos
Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Monoacilglicerol Lipases/antagonistas & inibidores , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Cinética , Monoacilglicerol Lipases/metabolismo , Ligação Proteica
18.
Eur J Pharm Sci ; 149: 105321, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275951

RESUMO

De novo synthesis of fatty acids is essential to maintain intensive proliferation of cancer cells. Unlike normal cells that utilize food-derived circulating lipids for their fuel, cancer cells rely on heightened lipogenesis irrespective of exogenous lipid availability. Overexpression and activity of the multidomain enzyme fatty acid synthase (FASN) is crucial in supplying palmitate for protumorigenic activity. Therefore, FASN has been proposed as an attractive target for drug development. As an effort to set up an effective toolkit to study FASN inhibitors in human and rodent tissues, we validated activity-based protein profiling (ABPP) as a viable approach to unveil inhibitors targeting FASN thioesterase domain (FASN-TE). ABPP was combined with multi-well plate-assays designed for classical substrate-based FASN activity analysis together with powerful monitoring of cancer cell proliferation using IncuCyte® Live Cell Analyzing System. FASN-TE inhibitors were identified by competitive ABPP using HEK293 cell lysates in a screen of in-house compounds (200+) designed to target serine hydrolase (SH) family. The identified compounds were tested for their inhibitor potencies in vitro using a substrate-based activity assay monitoring FASN-dependent NADPH consumption in LNCaP prostate cancer cell preparation, in parallel with selected reference inhibitors, including orlistat (THL), GSK2194069, GSK837149A, platensimycin and BI-99179. LNCaP lysate supernatant was validated as a reliable native preparation to monitor FASN-dependent NADPH consumption as opposed to human glioma GAMG cells, whereas FASN enrichment was a prerequisite for accurate assays. While inhibitor pharmacology was identical between human prostate and glioma cancer cell FASN preparations, notable differences were revealed between human and rodent FASN preparations, especially for inhibitors targeting FASN-TE. ABPP combined with substrate-based assays facilitated identification of pan thiol-reactive inhibitor scaffolds, exemplified by the 1,2,4-thiadiazole moiety. Finally, selected compounds were evaluated for their antiproliferative efficacy in situ using GAMG cells. These studies revealed that while the tested compounds acted as potent FASN inhibitors in vitro, only a few showed antiproliferative efficacy in situ. To conclude, we describe a versatile toolkit to study FASN inhibitors in vitro and in situ using human cancer cells and reveal dramatic pharmacological differences between human and rodent FASN preparations.

19.
Bioorg Med Chem ; 17(13): 4441-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19477133

RESUMO

A series of quinolinyl and isoquinolinyl phenyl ketones was synthesized and their CB(2) receptor-dependent G-protein activities were determined using the [(35)S]GTPgammaS binding assay. Both quinoline and isoquinoline derivatives exhibited similar CB(2) receptor agonist activity, the most potent ligands being the 2-(Me(2)N)-phenyl substituted derivatives, which were also full agonists at the CB(2)-receptor.


Assuntos
Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Quinolinas/síntese química , Quinolinas/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Isoquinolinas/química , Cetonas/síntese química , Cetonas/química , Cetonas/farmacologia , Ligação Proteica , Quinolinas/química
20.
J Med Chem ; 51(4): 932-6, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18217702

RESUMO

The blood-brain barrier efficiently controls the entry of drug molecules into the brain. We describe a feasible means to achieve carrier-mediated drug transport into the rat brain via the specific, large neutral amino acid transporter (LAT1) by conjugating a model compound to L-tyrosine. A hydrophilic drug, ketoprofen, that is not a substrate for LAT1 was chosen as a model compound. The mechanism and the kinetics of the brain uptake of the prodrug were determined with an in situ rat brain perfusion technique. The brain uptake of the prodrug was found to be concentration-dependent. In addition, a specific LAT1 inhibitor significantly decreased the brain uptake of the prodrug. Therefore, our results reveal for the first time that a drug-substrate conjugate is able to transport drugs into the brain via LAT1.


Assuntos
Encéfalo/metabolismo , Cetoprofeno/análogos & derivados , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Pró-Fármacos/farmacocinética , Tirosina/análogos & derivados , Aminoácidos Cíclicos/farmacologia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Capilares/metabolismo , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Estudos de Viabilidade , Cetoprofeno/química , Cetoprofeno/farmacocinética , Leucina/farmacocinética , Masculino , Perfusão , Pró-Fármacos/química , Ratos , Ratos Wistar , Tirosina/química , Tirosina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA