Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38816215

RESUMO

γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter of the central nervous system that impacts physical and mental health. Low GABA levels have been documented in several diseases, including multiple sclerosis and depression, and studies suggest that GABA could improve disease outcomes in those conditions. Probiotic bacteria naturally produce GABA and have been engineered to enhance its synthesis. Strains engineered thus far use inducible expression systems that require the addition of exogenous molecules, which complicates their development as therapeutics. This study aimed to overcome this challenge by engineering Lactococcus lactis with a constitutive GABA synthesis gene cassette. GABA synthesizing and transport genes (gadB and gadC) were cloned onto plasmids downstream of constitutive L. lactis promoters [P2, P5, shortened P8 (P8s)] of different strengths and transformed into L. lactis. Fold increase in gadCB expression conferred by these promoters (P2, P5, and P8s) was 322, 422, and 627, respectively, compared to the unmodified strain (P = 0.0325, P8s). GABA synthesis in the highest gadCB expressing strain, L. lactis-P8s-glutamic acid decarboxylase (GAD), was dependent on media supplementation with glutamic acid and significantly higher than the unmodified strain (P < 0.0001, 125 mM, 200 mM glutamic acid). Lactococcus lactis-P8s-GAD is poised for therapeutic testing in animal models of low-GABA-associated disease.


Assuntos
Glutamato Descarboxilase , Lactococcus lactis , Regiões Promotoras Genéticas , Ácido gama-Aminobutírico , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/biossíntese , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Engenharia Genética , Plasmídeos/genética , Ácido Glutâmico/metabolismo , Engenharia Metabólica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Clin Immunol ; 255: 109752, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673223

RESUMO

BACKGROUND: Farnesol (FOL) prevents the onset of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). OBJECTIVE: We examined the transcriptomic profile of the brains of EAE mice treated with daily oral FOL using next-generation sequencing (RNA-seq). METHODS: Transcriptomics from whole brains of treated and untreated EAE mice at the peak of EAE was performed. RESULTS: EAE-induced mice, compared to naïve, healthy mice, overall showed increased expression in pathways for immune response, as well as an increased cytokine signaling pathway, with downregulation of cellular stress proteins. FOL downregulates pro-inflammatory pathways and attenuates the immune response in EAE. FOL downregulated the expression of genes involved in misfolded protein response, MAPK activation/signaling, and pro-inflammatory response. CONCLUSION: This study provides insight into the molecular impact of FOL in the brain and identifies potential therapeutic targets of the isoprenoid pathway in MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Farneseno Álcool/farmacologia , Transcriptoma , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL
3.
J Autoimmun ; 137: 102957, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36435700

RESUMO

The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.


Assuntos
Doenças Autoimunes , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Doenças Autoimunes/metabolismo , Sistema Nervoso Central , Autoimunidade , Imunomodulação , Inflamação
4.
Clin Immunol ; 235: 108766, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34091018

RESUMO

Farnesol is a 15­carbon organic isoprenol synthesized by plants and mammals with anti-oxidant, anti-inflammatory, and neuroprotective activities. We sought to determine whether farnesol treatment would result in protection against murine experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis (MS). We compared disease progression and severity in C57BL/6 mice treated orally with 100 mg/kg/day farnesol solubilized in corn oil to corn-oil treated and untreated EAE mice. Farnesol significantly delayed the onset of EAE (by ~2 days) and dramatically decreased disease severity (~80%) compared to controls. Disease protection by farnesol was associated with a significant reduction in spinal cord infiltration by monocytes-macrophages, dendritic cells, CD4+ T cells, and a significant change in gut microbiota composition, including a decrease in the Firmicutes:Bacteroidetes ratio. The study suggests FOL could protect MS patients against CNS inflammatory demyelination by partially modulating the gut microbiome composition.


Assuntos
Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/prevenção & controle , Farneseno Álcool/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Administração Oral , Animais , Feminino , Camundongos
5.
Mol Genet Metab ; 132(1): 1-10, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358495

RESUMO

Inborn errors of metabolism (IEMs) represent monogenic disorders in which specific enzyme deficiencies, or a group of enzyme deficiencies (e.g., peroxisomal biogenesis disorders) result in either toxic accumulation of metabolic intermediates or deficiency in the production of key end-products (e.g., low cholesterol in Smith-Lemli-Opitz syndrome (Gedam et al., 2012 [1]); low creatine in guanidinoacetic acid methyltransferase deficiency (Stromberger, 2003 [2])). Some IEMs can be effectively treated by dietary restrictions (e.g., phenylketonuria (PKU), maple syrup urine disease (MSUD)), and/or dietary intervention to remove offending compounds (e.g., acylcarnitine excretion with the oral intake of l-carnitine in the disorders of fatty acid oxidation). While the IEMs are predominantly monogenic disorders, their phenotypic presentation is complex and pleiotropic, impacting multiple physiological systems (hepatic and neurological function, renal and musculoskeletal impairment, cardiovascular and pulmonary activity, etc.). The metabolic dysfunction induced by the IEMs, as well as the dietary interventions used to treat them, are predicted to impact the gut microbiome in patients, and it is highly likely that microbiome dysbiosis leads to further exacerbation of the clinical phenotype. That said, only recently has the gut microbiome been considered as a potential pathomechanistic consideration in the IEMs. In this review, we overview the function of the gut-brain axis, the crosstalk between these compartments, and the expanding reports of dysbiosis in the IEMs recently reported. The potential use of pre- and probiotics to improve clinical outcomes in IEMs is also highlighted.


Assuntos
Encéfalo/metabolismo , Disbiose/genética , Microbioma Gastrointestinal/genética , Erros Inatos do Metabolismo/genética , Encéfalo/microbiologia , Encéfalo/fisiopatologia , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Intestinos/patologia , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/microbiologia
6.
FEBS J ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38817090

RESUMO

Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.

7.
Front Nutr ; 10: 1146748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063324

RESUMO

Over the last few decades, the incidence of multiple sclerosis has increased as society's dietary habits have switched from a whole foods approach to a high fat, high salt, low dietary fiber, and processed food diet, termed the "Western diet." Environmental factors, such as diet, could play a role in the pathogenesis of multiple sclerosis due to gut microbiota alterations, gut barrier leakage, and subsequent intestinal inflammation that could lead to exacerbated neuroinflammation. This mini-review explores the gut microbiome alterations of various dietary strategies that improve upon the "Western diet" as promising alternatives and targets to current multiple sclerosis treatments. We also provide evidence that gut microbiome modulation through diet can improve or exacerbate clinical symptoms of multiple sclerosis, highlighting the importance of including gut microbiome analyses in future studies of diet and disease.

8.
Ann Neurol ; 69(2): 240-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21387369

RESUMO

The mammalian gastrointestinal track harbors a highly heterogeneous population of microbial organisms that are essential for the complete development of the immune system. The gut microbes or "microbiota," coupled with host genetics, determine the development of both local microbial populations and the immune system to create a complex balance recently termed the "microbiome." Alterations of the gut microbiome may lead to dysregulation of immune responses both in the gut and in distal effector immune sites such as the central nervous system (CNS). Recent findings in experimental autoimmune encephalomyelitis, an animal model of human multiple sclerosis, suggest that altering certain bacterial populations present in the gut can lead to a proinflammatory condition that may result in the development of autoimmune diseases, in particular human multiple sclerosis. In contrast, other commensal bacteria and their antigenic products, when presented in the correct context, can protect against inflammation within the CNS.


Assuntos
Doenças do Sistema Nervoso Central/microbiologia , Trato Gastrointestinal/microbiologia , Inflamação/microbiologia , Bactérias/imunologia , Doenças do Sistema Nervoso Central/imunologia , Trato Gastrointestinal/imunologia , Humanos , Inflamação/imunologia , Metagenoma
9.
J Immunol ; 185(7): 4101-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20817872

RESUMO

The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microflora can affect a population of Foxp3(+)T(reg) cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that Bacteroides fragilis producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type B. fragilis maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient B. fragilis restored EAE susceptibility. Enhanced numbers of Foxp3(+)T(reg) cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of B. fragilis. Ex vivo, CD4(+)T cells obtained from mice reconstituted with wild type B. fragilis had significantly enhanced rates of conversion into IL-10-producing Foxp3(+)T(reg) cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular B. fragilis expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis.


Assuntos
Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/imunologia , Bacteroides fragilis/imunologia , Encefalomielite Autoimune Experimental/imunologia , Mucosa Intestinal/microbiologia , Animais , Separação Celular , Encefalomielite Autoimune Experimental/microbiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
J Immunol ; 183(10): 6041-50, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19841183

RESUMO

Mucosal tolerance has been considered a potentially important pathway for the treatment of autoimmune disease, including human multiple sclerosis and experimental conditions such as experimental autoimmune encephalomyelitis (EAE). There is limited information on the capacity of commensal gut bacteria to induce and maintain peripheral immune tolerance. Inbred SJL and C57BL/6 mice were treated orally with a broad spectrum of antibiotics to reduce gut microflora. Reduction of gut commensal bacteria impaired the development of EAE. Intraperitoneal antibiotic-treated mice showed no significant decline in the gut microflora and developed EAE similar to untreated mice, suggesting that reduction in disease activity was related to alterations in the gut bacterial population. Protection was associated with a reduction of proinflammatory cytokines and increases in IL-10 and IL-13. Adoptive transfer of low numbers of IL-10-producing CD25(+)CD4(+) T cells (>75% FoxP3(+)) purified from cervical lymph nodes of commensal bacteria reduced mice and in vivo neutralization of CD25(+) cells suggested the role of regulatory T cells maintaining peripheral immune homeostasis. Our data demonstrate that antibiotic modification of gut commensal bacteria can modulate peripheral immune tolerance that can protect against EAE. This approach may offer a new therapeutic paradigm in the treatment of multiple sclerosis and perhaps other autoimmune conditions.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Encefalomielite Autoimune Experimental/prevenção & controle , Intestinos/microbiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Administração Oral , Transferência Adotiva , Animais , Antibacterianos/administração & dosagem , Bactérias/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/microbiologia , Feminino , Glicoproteínas/farmacologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-13/imunologia , Interleucina-13/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Proteolipídica de Mielina/farmacologia , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/farmacologia
11.
Vaccines (Basel) ; 9(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802556

RESUMO

Salmonellosis remains a major medical and an unmet socioeconomic challenge. Worldwide, more than three million deaths per year are associated with Salmonella enterica serovar Enteritidis infections. Although commercially available vaccines for use in poultry exist, their efficacy is limited. We previously described a method for isolating a heat extract (HE) fraction of the cell surface of S. Enteritidis that contained major antigenic complexes immunogenic in hens naturally infected with the bacterium. One single dose of S. Enteritidis' HE induced protection against lethal salmonellosis in mice. Furthermore, HE encapsulation in nanoparticles of the copolymer of methyl vinyl ether and maleic anhydride (PVM/MA), Gantrez AN, improved and prolonged the protection against the disease in mice. We formulated new preparations of Gantrez AN nanoparticles with HE S. Enteritidis and assessed their stability in drinking water and their efficacy in hens after experimental infection. The oral treatment of six-week-old hens with two doses of HE nanoparticles significantly reduced the Salmonella excretion in hens. Due to the effectiveness of the treatment in reducing bacterial excretion, we conclude that HE nanoencapsulation obtained from S. Enteritidis is a viable novel vaccination approach against salmonellosis in farms.

12.
Front Immunol ; 12: 662807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025663

RESUMO

The symbiotic relationship between animals and their resident microorganisms has profound effects on host immunity. The human microbiota comprises bacteria that reside in the gastrointestinal tract and are involved in a range of inflammatory and autoimmune diseases. The gut microbiota's immunomodulatory effects extend to extraintestinal tissues, including the central nervous system (CNS). Specific symbiotic antigens responsible for inducing immunoregulation have been isolated from different bacterial species. Polysaccharide A (PSA) of Bacteroides fragilis is an archetypical molecule for host-microbiota interactions. Studies have shown that PSA has beneficial effects in experimental disease models, including experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis (MS). Furthermore, in vitro stimulation with PSA promotes an immunomodulatory phenotype in human T cells isolated from healthy and MS donors. In this review, we discuss the current understanding of the interactions between gut microbiota and the host in the context of CNS inflammatory demyelination, the immunomodulatory roles of gut symbionts. More specifically, we also discuss the immunomodulatory effects of B. fragilis PSA in the gut-brain axis and its therapeutic potential in MS. Elucidation of the molecular mechanisms responsible for the microbiota's impact on host physiology offers tremendous promise for discovering new therapies.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/metabolismo , Suscetibilidade a Doenças , Retroalimentação Fisiológica , Trato Gastrointestinal/metabolismo , Animais , Bacteroides fragilis/imunologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunomodulação , Polissacarídeos Bacterianos/imunologia
13.
Curr Protoc ; 1(12): e314, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870901

RESUMO

Microbiome composition studies are increasingly shedding light on animal models of disease. This paper describes a protocol for analyzing the gut microbiome composition prior to and after the induction of mice to experimental autoimmune encephalomyelitis (EAE), the principal animal model of the human neuroinflammatory demyelinating disease multiple sclerosis (MS). We also address and provide data assessing the impact of mice reared in different animal facilities on EAE induction. Furthermore, we discuss potential regulators of the gut-microbiome-brain axis (GMBA) in relation to neuroinflammation and implications on demyelinating disease states. Our results suggest that mice reared in different animal facilities produce different levels of EAE induction. These results highlight the importance of accounting for consistent environmental conditions when inducing EAE and other animal models of disease. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Study of the composition of the gut microbiome in the neuroinflammatory model of experimental autoimmune encephalomyelitis Basic Protocol 2: Experimental procedures for DNA extraction and microbiome analysis.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Modelos Animais de Doenças , Camundongos , Doenças Neuroinflamatórias
14.
J Immunol ; 181(2): 954-68, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606647

RESUMO

Treatment with an anti-inflammatory Salmonella vaccine expressing enterotoxigenic Escherichia coli colonization factor Ag 1 (CFA/I) proved effective in stimulating protective, potent CD25(+)CD4(+) regulatory T (T(reg)) cells in susceptible mice challenged with experimental autoimmune encephalomyelitis (EAE). Because the Salmonella vector was considerably less protective, we questioned whether altering fimbrial subunit expression to resemble conventional Salmonella expression may impact T(reg) cell potency. The Salmonella-CFA/I vaccine was modified to limit fimbrial subunit expression to the intracellular compartment (Salmonella-CFA/I(IC)). SJL mice were challenged with proteolipid protein peptide 139-151 to induce EAE and orally treated with one of three Salmonella vaccines 6 days postchallenge. Treatment with Salmonella-CFA/I(IC) greatly reduced clinical disease, similarly as Salmonella-CFA/I, by subduing IL-17 and IL-21; however, mechanisms of protection differed as evident by increased IL-13 and IFN-gamma but diminished TGF-beta production by T(reg) cells from Salmonella-CFA/I(IC)-treated mice. Adoptive transfer of T(reg) cells from both CFA/I-expressing constructs was equivalent in protecting against EAE, showing minimal disease. Although not as potent in its protection, CD25(-)CD4(+) T cells from Salmonella-CFA/I(IC) showed minimal Th2 cells, but vaccination did prime these Th2 cells rendering partial protection against EAE challenge. In vivo IL-13 but not IFN-gamma neutralization compromised protection conferred by adoptive transfer with Salmonella-CFA/I(IC)-induced T(reg) cells. Thus, the Salmonella-CFA/I(IC) vaccine elicits T(reg) cells with attributes from both the Salmonella vector and Salmonella-CFA/I vaccines. Importantly, these T(reg) cells can be induced to high potency by simply vaccinating against irrelevant Ags, offering a novel approach to treat autoimmune diseases independently of the autoantigen.


Assuntos
Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Proteínas de Fímbrias/imunologia , Interleucina-13/metabolismo , Vacinas contra Salmonella/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Proteínas de Fímbrias/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-13/imunologia , Camundongos , Linfócitos T Reguladores/metabolismo , Células Th2/metabolismo
15.
Diseases ; 8(3)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872621

RESUMO

There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.

16.
Front Immunol ; 11: 510113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193297

RESUMO

The intestinal microbiota constitutes a complex ecosystem in constant reciprocal interactions with the immune, neuroendocrine, and neural systems of the host. Recent molecular technological advances allow for the exploration of this living organ and better facilitates our understanding of the biological importance of intestinal microbes in health and disease. Clinical and experimental studies demonstrate that intestinal microbes may be intimately involved in the progression of diseases of the central nervous system (CNS), including those of affective and psychiatric nature. Gut microbes regulate neuroinflammatory processes, play a role in balancing the concentrations of neurotransmitters and could provide beneficial effects against neurodegeneration. In this review, we explore some of these reciprocal interactions between gut microbes and the CNS during experimental disease and suggest that therapeutic approaches impacting the gut-brain axis may represent the next avenue for the treatment of psychiatric disorders.


Assuntos
Sistema Nervoso Central/imunologia , Microbioma Gastrointestinal/imunologia , Transtornos Mentais , Neurotransmissores/imunologia , Animais , Humanos , Transtornos Mentais/imunologia , Transtornos Mentais/microbiologia
17.
Med Sci (Basel) ; 6(3)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149548

RESUMO

Recently, there has been a substantial increase in the number of studies focused upon connecting the gut microbiome with cases of central nervous system (CNS) autoimmunity. Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder of the CNS. Recent experimental and clinical evidence suggests the presence of microbial imbalances in the gut of MS sufferers. The gut microbiome is defined as the summation of all the microbial entities as well as their genes, proteins, and metabolic products in a given space and time. Studies show the MS gut microbiome as having general alterations in specific taxa, some associated with the promotion of inflammatory cytokines and overall inflammation. In conjunction with these findings, experimental models of the disease have reported that T regulatory (Treg) cells have deficits in their function as a result of the aberrant gut microbiota composition. The findings suggest that the interactions between the host and the microbiota are reciprocal, although more extensive work is required to confirm this. Moreover, evidence indicates that changes in microbiota composition may result in imbalances that could result in disease, with the gut as a potential novel therapeutic avenue. By understanding the biological effects of aberrant gut microbiome composition, it is possible to contemplate current therapeutic options and their efficacy. Ultimately, more research is necessary in this field, but targeting the gut microbiota may lead to the development of novel therapeutic strategies.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29311123

RESUMO

The microbiome can be defined as the sum of the microbial and host's genome. Recent information regarding this complex organ suggests that in animal models of multiple sclerosis (MS), the composition of the gut microbiome can be altered, giving rise to both the effector and regulatory phases of central nervous system (CNS) demyelination. Experimental findings during the past decade in animal models of MS have provided clear evidence for the significant role of gut microbes in both the effector and regulatory phase of this condition. There is mounting evidence in preliminary human studies suggesting that a dysbiotic MS gut microbiome could affect disease progression. We propose considering the gut microbiome as a key organ for the regulation of tolerance mechanisms and speculate that the gut microbiome is the major environmental risk factor for CNS demyelinating disease. Accordingly, we hypothesize that intervention of the gut microbiome could result in safer novel therapeutic strategies to treat MS.


Assuntos
Microbioma Gastrointestinal/fisiologia , Esclerose Múltipla/microbiologia , Esclerose Múltipla/fisiopatologia , Animais , Progressão da Doença , Humanos , Esclerose Múltipla/imunologia , Neuroimunomodulação
19.
Nutr Rev ; 76(10): 725-746, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101294

RESUMO

Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.


Assuntos
Anticolesterolemiantes/farmacologia , Doenças Cardiovasculares/terapia , Dieta/métodos , Hipercolesterolemia/terapia , Enteropatias/terapia , Erros Inatos do Metabolismo Lipídico/terapia , Fitosteróis/efeitos adversos , Fitosteróis/farmacologia , Canadá , Doenças Cardiovasculares/sangue , Colesterol/sangue , LDL-Colesterol/sangue , Congressos como Assunto , Humanos , Hipercolesterolemia/sangue , Enteropatias/sangue , Erros Inatos do Metabolismo Lipídico/sangue , Fitosteróis/sangue
20.
Infect Immun ; 75(12): 5845-58, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17893129

RESUMO

Coxiella burnetii is a highly infectious obligate intracellular bacterium. The phase I form is responsible for Q fever, a febrile illness with flu-like symptoms that often goes undiagnosed. The attenuated C. burnetii phase II (having a truncated "O" chain of its lipopolysaccharide) does not cause disease in immunocompetent animals; however, phase II organisms remain infectious, and we questioned whether disease could be produced in immunodeficient mice. To study C. burnetii phase II infections, febrile responses in gamma interferon knockout (IFN-gamma(-/-)), BALB/c, Toll-like receptor 2 knockout (TLR2(-/-)), and C57BL/6 mice were measured using the Nine Mile phase II (NMII) strain of C. burnetii. Immunocompetent mice showed minimal febrile responses, unlike those obtained with IFN-gamma(-/-) and TLR2(-/-) mice, which showed elevated rectal temperatures that were sustained for approximately 15 days with transient increases in splenic weights. Reinfection of IFN-gamma(-/-) and TLR2(-/-) mice with C. burnetii NMII 30 days after primary infection protected mice as evident by reduced febrile responses and a lack of splenic inflammation. Although minimal detection of Coxiella in TLR2(-/-) mouse spleens was observed, greater colonization was evident in the IFN-gamma(-/-) mice. Cytokine analysis was performed on infected peritoneal macrophages isolated from these mice, and immunocompetent macrophages showed robust tumor necrosis factor alpha, IFN-gamma, and granulocyte-macrophage colony-stimulating factor (GM-CSF) but no interleukin-12 (IL-12) responses. IFN-gamma(-/-) macrophages produced elevated levels of IL-6, IL-10, and IL-12, while TLR2(-/-) macrophages produced GM-CSF, IL-12, and minimal IL-10. To distinguish immunity conferred by innate or adaptive systems, adoptive transfer studies were performed and showed that immune lymphocytes obtained from immunocompetent mice protected against a subsequent challenge with NMII, indicating that adaptive immunity mediates the observed protection. Thus, our data show that NMII is capable of eliciting disease in immunocompromised mice, which may help in evaluation of vaccine candidates as well as the study of host-pathogen interactions.


Assuntos
Vacinas Bacterianas/toxicidade , Coxiella burnetii/imunologia , Interferon gama/imunologia , Macrófagos Peritoneais/microbiologia , Febre Q/etiologia , Receptor 2 Toll-Like/imunologia , Animais , Linfócitos B/imunologia , Vacinas Bacterianas/imunologia , Chlorocebus aethiops , Coxiella burnetii/patogenicidade , Citocinas/imunologia , Feminino , Hospedeiro Imunocomprometido , Imunoglobulina G/imunologia , Interferon gama/deficiência , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Febre Q/imunologia , Febre Q/microbiologia , Esplenomegalia/microbiologia , Linfócitos T/imunologia , Receptor 2 Toll-Like/metabolismo , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/toxicidade , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA