Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488158

RESUMO

Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.


Assuntos
MicroRNAs , Músculo Liso Vascular , Becaplermina/farmacologia , Proliferação de Células , Miócitos de Músculo Liso , Fenótipo , MicroRNAs/genética , Movimento Celular , Células Cultivadas
2.
Sheng Li Xue Bao ; 73(3): 482-490, 2021 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-34230949

RESUMO

S100 calcium binding protein A9 (S100A9) is involved in a variety of biological processes such as inflammation and tumor cell migration and invasion regulation. The purpose of this study was to construct S100A9 gene-edited mice by using CRISPR/Cas9 technology, thereby providing an animal model for exploring the biological functions of this gene. According to the S100A9 gene sequence, the single-stranded small guide RNA (sgRNA) targeting exons 2 and 3 was transcribed in vitro, and a mixture of Cas9 mRNA and candidate sgRNA was injected into mouse fertilized eggs by microinjection. Early embryos were obtained and transferred to surrogate mice, and F0 mice were obtained and identified by PCR identification and gene sequencing. F0 mice were further mated with wild-type C57BL/6 mice to obtain F1 heterozygous mice, and then homozygous offspring were obtained through F1 mice self-crossing. Real-time PCR, Western blot and immunohistochemistry (IHC) were used to verify the expression and distribution of S100A9. In order to observe the pathological changes of mouse lung tissue using HE staining, an allergic asthma model was induced by ovalbumin from chicken egg white (OVA). The results showed that the 2 492 bp of exons 2, 3 of the S100A9 gene was successfully knocked out, and S100A9-/- mice with stable inheritance were obtained. Furthermore, it was found that S100A9 gene was highly expressed in the lung and spleen of wild-type mice. The expression of S100A9 mRNA and protein was not detected in the lung and spleen of S100A9-/- mice. However, compared with wild-type mice, the lungs of S100A9-/- mice showed a significantly worse inflammatory phenotype, and the proportion of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly increased in response to the treatment of OVA. These results suggest we have successfully constructed a new strain of S100A9-/- mice, and preliminarily confirmed that the lack of S100A9 function can aggravate airway inflammation in asthmatic mice, providing a new mouse model for further study of S100A9 gene function.


Assuntos
Marcação de Genes , Animais , Líquido da Lavagem Broncoalveolar , Sistemas CRISPR-Cas/genética , Calgranulina B , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Fenótipo
3.
Cell Biol Int ; 44(9): 1870-1880, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32437058

RESUMO

The objective of this project was to find a bronchodilatory compound from herbs and clarify the mechanism. We found that the ethanol extract of Folium Sennae (EEFS) can relax airway smooth muscle (ASM). EEFS inhibited ASM contraction, induced by acetylcholine, in mouse tracheal rings and lung slices. High-performance liquid chromatography assay showed that EEFS contained emodin. Emodin had a similar reversal action. Acetylcholine-evoked contraction was also partially reduced by nifedipine (a selective inhibitor of L-type voltage-dependent Ca2+ channels, LVDCCs), YM-58483 (a selective inhibitor of store-operated Ca2+ entry, SOCE), as well as Y-27632 (an inhibitor of Rho-associated protein kinase). In addition, LVDCC- and SOCE-mediated currents and cytosolic Ca2+ elevations were inhibited by emodin. Emodin reversed acetylcholine-caused increases in phosphorylation of myosin phosphatase target subunit 1. Furthermore, emodin, in vivo, inhibited acetylcholine-induced respiratory system resistance in mice. These results indicate that EEFS-induced relaxation results from emodin inhibiting LVDCC, SOCE, and Ca2+ sensitization. These findings suggest that Folium Sennae and emodin may be new sources of bronchodilators.


Assuntos
Emodina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Acetilcolina/efeitos adversos , Acetilcolina/farmacologia , Animais , Broncodilatadores/metabolismo , Broncodilatadores/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/fisiologia , Extratos Vegetais/farmacologia , Senna/metabolismo
4.
J Pharmacol Sci ; 142(2): 60-68, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31843508

RESUMO

The purpose of this study was to screen a bronchodilator from old drugs and elucidate the underlying mechanism. Paracetamol (acetaminophen) is a widely used analgesic and antipyretic drug. It has been reported that it inhibits the generation of prostaglandin and histamine, which play roles in asthma. These findings led us to explore whether paracetamol could be a potential bronchodilator. Paracetamol inhibited high K+- and acetylcholine (ACH)-induced precontraction of mouse tracheal and bronchial smooth muscles. Moreover, the ACH-induced contraction was partially inhibited by nifedipine (selective blocker of LVDCCs), YM-58483 (selective inhibitor of store-operated Ca2+ entry (SOCE), canonical transient receptor potential 3 (TRPC3) and TRPC5 channels) and Y-27632 (selective blocker of ROCK, a linker of the Ca2+ sensitization pathway). In single airway smooth muscle cells, paracetamol blocked the currents sensitive to nifedipine and YM-58483, and inhibited intracellular Ca2+ increases. In addition, paracetamol inhibited ACH-induced phosphorylation of myosin phosphatase target subunit 1 (MYPT1, another linker of the Ca2+ sensitization pathway). Finally, in vivo paracetamol inhibited ACH-induced increases of mouse respirator system resistance. Collectively, we conclude that paracetamol inhibits ASM contraction through blocking LVDCCs, SOCE and/or TRPC3 and/or TRPC5 channels, and Ca2+ sensitization. These results suggest that paracetamol might be a new bronchodilator.


Assuntos
Acetaminofen/farmacologia , Antipiréticos/farmacologia , Asma/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Acetilcolina/química , Acetilcolina/farmacologia , Animais , Asma/tratamento farmacológico , Brônquios/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Nifedipino/farmacologia , Potássio/metabolismo
5.
Mol Cell Biochem ; 456(1-2): 95-104, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30604066

RESUMO

Lysine-specific demethylase 2A (KDM2A, also known as JHDM1A or FBXL11) plays an important role in regulating cell proliferation. However, the mechanisms on KDM2A controlling cell proliferation are varied among cell types, even controversial conclusions have been drawn. In order to elucidate the functions and underlying mechanisms for KDM2A controlling cell proliferation and apoptosis, we screened a KDM2A knockout HEK293T cell lines by CRISPR-Cas9 to illustrate the effects of KDM2A on both biological process. The results indicate that knocking down expression of KDM2A can significantly weaken HEK293T cell proliferation. The cell cycle analysis via flow cytometry demonstrate that knockdown expression of KDM2A will lead more cells arrested at G2/M phase. Through the RNA-seq analysis of the differential expressed genes between KDM2A knockdown HEK293T cells and wild type, we screened out that TGF-ß pathway was significantly downregulated in KDM2A knockdown cells, which indicates that TGF-ß signaling pathway might be the downstream target of KDM2A to regulate cell proliferation. When the KDM2A knockdown HEK293T cells were transient-transfected with KDM2A overexpression plasmid or treated by TGF-ß agonist hydrochloride, the cell proliferation levels can be partial or completely rescued. However, the TGF-ß inhibitor LY2109761 can significantly inhibit the KDM2A WT cells proliferation, but not the KDM2A knockdown HEK293T cells. Taken together, these findings suggested that KDM2A might be a key regulator of cell proliferation and cell cycle via impacting TGF-ß signaling pathway.


Assuntos
Proliferação de Células , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Sistemas CRISPR-Cas , Proteínas F-Box/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Pirazóis/farmacologia , Pirróis/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/genética
6.
Clin Exp Pharmacol Physiol ; 46(4): 329-336, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30609110

RESUMO

Azithromycin (AZM) has been used for the treatment of asthma and chronic obstructive pulmonary disease (COPD); however, the effects and underlying mechanisms of AZM remain largely unknown. The effects of AZM on airway smooth muscles (ASMs) and the underlying mechanisms were studied using isometric muscle force measurements, the examination of lung slices, imaging, and patch-clamp techniques. AZM completely inhibited acetylcholine (ACH)-induced precontraction of ASMs in animals (mice, guinea pigs, and rabbits) and humans. Two other macrolide antibiotics, roxithromycin and Klaricid, displayed a decreased inhibitory activity, and the aminoglycoside antibiotics penicillin and streptomycin did not have an inhibitory effect. Precontractions were partially inhibited by nifedipine (selective inhibitor of L-type voltage-dependent Ca2+ channels (LVDCCs)), Pyr3 (selective inhibitor of TRPC3 and/or STIM/Orai channels, which are nonselective cation channels (NSCCs)), and Y-27632 (selective inhibitor of Rho-associated kinase (ROCK)). Moreover, LVDCC- and NSCC-mediated currents were inhibited by AZM, and the latter were suppressed by the muscarinic (M) 2 receptor inhibitor methoctramine. AZM inhibited LVDCC Ca2+ permeant ion channels, M2 receptors, and TRPC3 and/or STIM/Orai, which decreased cytosolic Ca2+ concentrations and led to muscle relaxation. This relaxation was also enhanced by the inhibition of Ca2+ sensitization. Therefore, AZM has potential as a novel and potent bronchodilator. The findings of this study improve the understanding of the effects of AZM on asthma and COPD.

7.
Mikrochim Acta ; 186(8): 494, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267250

RESUMO

This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Grafite/química , Sondas de Ácido Nucleico/química , Teofilina/análise , Trifosfato de Adenosina/química , Fluorescência , Teofilina/química
8.
Cell Physiol Biochem ; 47(4): 1546-1555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940574

RESUMO

BACKGROUND/AIMS: Tetraethylammonium chloride (TEA) induces oscillatory contractions in mouse airway smooth muscle (ASM); however, the generation and maintenance of oscillatory contractions and their role in ASM are unclear. METHODS: In this study, oscillations of ASM contraction and intracellular Ca2+ were measured using force measuring and Ca2+ imaging technique, respectively. TEA, nifedipine, niflumic acid, acetylcholine chloride, lithium chloride, KB-R7943, ouabain, 2-Aminoethoxydiphenyl borate, thapsigargin, tetrodotoxin, and ryanodine were used to assess the mechanism of oscillatory contractions. RESULTS: TEA induced depolarization, resulting in activation of L-type voltage-dependent Ca2+ channels (LVDCCs) and voltage-dependent Na+ (VNa) channels. The former mediated Ca2+ influx to trigger a contraction and the latter mediated Na+ entry to enhance the contraction via activating LVDCCs. Meanwhile, increased Ca2+-activated Cl- channels, inducing depolarization that resulted in contraction through LVDCCs. In addition, the contraction was enhanced by intracellular Ca2+ release from Ca2+ stores mediated by inositol (1,4,5)-trisphosphate receptors (IP3Rs). These pathways together produce the contractile phase of the oscillatory contractions. Furthermore, the increased Ca2+ activated the Na+-Ca2+ exchanger (NCX), which transferred Ca2+ out of and Na+ into the cells. The former induced relaxation and the latter activated Na+/K+-ATPase that induced hypopolarization to inactivate LVDCCs causing further relaxation. This can also explain the relaxant phase of the oscillatory contractions. Moreover, the depolarization induced by VNa channels and NCX might be greater than the hypopolarization caused by Na+/K+-ATPase alone, inducing LVDCC activation and resulting in further contraction. CONCLUSIONS: These data indicate that the TEA-induced oscillatory contractions were cooperatively produced by LVDCCs, VNa channels, Ca2+-activated Cl- channels, NCX, Na+/K+ ATPase, IP3Rs-mediated Ca2+ release, and extracellular Ca2+.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Tetraetilamônio/farmacologia , Traqueia/metabolismo , Animais , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C
9.
Planta Med ; 84(2): 83-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28817840

RESUMO

This study aimed to elucidate the mechanisms of nuciferine (a main aporphine alkaloid of lotus leaf extract), which can induce relaxation in contracted tracheal rings. Under Ca2+-free and 2 mM Ca2+ conditions, we found that nuciferine had no effect on the resting muscle tone of tracheal rings. In contrast, nuciferine relaxed high K+-contracted mouse tracheal rings in a dose-dependent manner and inhibited both Ca2+ influx and voltage-dependent L-type Ca2+ channel currents induced by high K+. Similarly, nuciferine also inhibited acetylcholine-induced contractions in mouse tracheal rings in a dose-dependent manner. Meanwhile, both acetylcholine-induced intracellular Ca2+ influx and whole-cell currents of nonselective cation channels were blocked by nuciferine. Together, the results indicate that nuciferine-induced relaxation in tracheal rings mainly occurred due to the inhibition of extracellular Ca2+ influx through the blockade of voltage-dependent L-type Ca2+ channels and/or nonselective cation channels. These results suggest that nuciferine has a therapeutic effect on respiratory diseases associated with the aberrant contraction of airway smooth muscles and/or bronchospasm.


Assuntos
Aporfinas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Nelumbo/química , Parassimpatolíticos/farmacologia , Traqueia/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Aporfinas/química , Aporfinas/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Músculo Liso/metabolismo
10.
Mikrochim Acta ; 185(8): 375, 2018 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-30008087

RESUMO

An innovative signal amplification strategy assisted by RNase H is described here for the detection of DNA targets in a universal fashion. A tailor-made RNA molecular beacon (RMB) conjugated with a fluorescence resonance energy transfer (FRET) pair (fluorophore and quencher) was designed, characterized, and combined with the employment of RNase H. Its performance is compared to that of other nucleases including Exonuclease III and T7 exonuclease. Fluorometry, performed best at excitation/emission wavelengths of 490/520 nm, gives an amazingly low detection limit of 23 fM for target DNA. The method was verified by the determination of human hemochromatosis (HFE) gene. It is perceived that the method represents a versatile tool for the detection of a wide range of targets. Graphical Abstract An RNase H-assisted signal amplification (RASA) method for the fluorometric assay of nucleic acids has been developed by using a unique RNA molecular beacon (RNA MB) conjugated with a fluorophore (F) and quencher (Q) pair for signal generation.


Assuntos
DNA/análise , Fluorometria/métodos , Limite de Detecção , Sondas de Oligonucleotídeos/metabolismo , Ribonuclease H/metabolismo , DNA/metabolismo , Hemocromatose/genética , Humanos , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos/química
11.
Clin Exp Pharmacol Physiol ; 44(10): 1053-1059, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28682475

RESUMO

The effects of hypertonic solution on airway smooth muscle (ASM) contraction and the underlying mechanisms are largely unknown. We found that hypertonic saline (HS) inhibited acetylcholine (ACh)-induced contraction of ASM from the mouse trachea and human bronchi. In single mouse ASM cells (ASMCs), ACh induced an increase in intracellular Ca2+ that was further enhanced by 5% NaCl, indicating that the HS-induced inhibition of ASM contraction was not mediated by a decrease in cytosolic Ca2+ . The Rho-associated kinase (ROCK) inhibitor Y-27632 relaxed ACh-induced precontraction of mouse tracheal rings. However, such inhibition was not observed after the relaxation induced by 5% NaCl. Moreover, the incubation of mouse tracheal rings with 5% NaCl decreased ACh-induced phosphorylation of myosin light chain 20 and myosin phosphatase target subunit 1. These data indicate that HS inhibits the contraction of ASM by inhibiting Ca2+ sensitization, not by decreasing intracellular Ca2+ .


Assuntos
Cálcio/metabolismo , Pulmão/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Solução Salina Hipertônica/farmacologia , Acetilcolina/farmacologia , Animais , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/citologia , Músculo Liso/metabolismo
12.
Cell Physiol Biochem ; 36(1): 133-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25925287

RESUMO

BACKGROUND/AIMS: Bitter-tasting chloroquine can suppress T cell activation by inhibiting Ca(2+) signaling. However, the mechanism of inhibition remains largely unclear. METHODS: In this study, CD4(+) T cells were isolated from the thymus, and the calcium content of CD4(+) thymocytes was measured using fura-2 AM and a TILL imaging system. Pyrazole-3 (Pyr3), thapsigargin (TG), and caffeine were used to assess the effects of chloroquine on the intracellular Ca(2+) content of CD4(+) T cells. RESULTS: In murine CD4(+) thymocytes, chloroquine decreased the TG-triggered intracellular Ca(2+) increase in a dose-dependent manner. In the absence of chloroquine under Ca(2+)-free conditions (0 mM Ca(2+) and 0.5 mM EGTA), TG induced a transient Ca(2+) increase. After restoration of the extracellular Ca(2+) concentration to 2 mM, a dramatic Ca(2+) increase occurred. This elevation was completely blocked by chloroquine and was markedly inhibited by Pyr3, a selective antagonist of transient receptor potential C3 (TRPC3) channel and stromal interaction molecule (STIM)/Orai channel. Furthermore, the TG-induced transient Ca(2+) increase under Ca(2+)-free conditions was eliminated in the presence of chloroquine. Chloroquine also blocked the dialyzed inositol-1,4,5-trisphosphate (IP3)-induced intracellular Ca(2+) increase. However, chloroquine was not able to decrease the caffeine-induced Ca(2+) increase. CONCLUSION: These data indicate that chloroquine inhibits the elevation of intracellular Ca(2+) in thymic CD4(+) T cells by inhibiting IP3 receptor-mediated Ca(2+) release from intracellular stores and TRPC3 channel-mediated and/or STIM/Orai channel-mediated Ca(2+) influx.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Cloroquina/farmacologia , Timócitos/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/metabolismo , Cafeína/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Pirazóis/farmacologia , Tapsigargina/farmacologia , Timócitos/citologia , Timócitos/metabolismo
13.
Dalton Trans ; 53(23): 10018, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804223

RESUMO

Correction for 'Single molecule magnet features in luminescent lanthanide coordination polymers with heptacoordinate Dy/Yb(III) ions as nodes' by Xiang-Tao Dong et al., Dalton Trans., 2023, 52, 12686-12694, https://doi.org/10.1039/D3DT02106H.

14.
Mol Cancer ; 12(1): 135, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24215632

RESUMO

BACKGROUND: 6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. METHODS: Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. RESULTS: The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation-dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. CONCLUSION: The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Catecóis/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Leucemia/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Caspase 3/metabolismo , Caspase 7/metabolismo , Catecóis/química , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/química , Células HL-60 , Humanos , Células Jurkat , Leucemia/enzimologia , Leucemia/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Simulação de Acoplamento Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Proteólise , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Dalton Trans ; 52(36): 12686-12694, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37609766

RESUMO

Two sets of 1D/2D lanthanide coordination polymers with formulas of Ln(oqa)3·2H2O [Hoqa = 2-(4-oxoquinolin-1(4H)-yl) acetic acid, Ln = Dy (1), Yb (2)] and Ln(oaa)2(HCOO)(H2O) [Hoaa = 2-(9-oxoacridin-10(9H)-yl) acetic acid, Ln = Dy (3), Yb (4)] have been synthesized and their physical properties were investigated. All four complexes are constructed from seven-coordinate lanthanide ions and corresponding organic linkers. The lanthanide ions in 1 and 2 adopt a pentagonal bipyramid coordination geometry, whereas the coordination geometry of lanthanide ions in 3 and 4 can be described as a capped octahedron. Slow magnetic relaxation behaviors were observed in these four products at a zero/non-zero static magnetic field. Complexes 1, 2 and 4 exhibit the characteristic emission of Ln(III) ions, whereas complex 3 shows ligand-based emission. Bright yellow light emission was also observed when a voltage was applied, demonstrating the potential of 1 for application in light-emitting diodes (LEDs). Compounds 3 and 4 are the first examples of lanthanide complexes based on Hoaa ligands.

16.
Front Bioeng Biotechnol ; 11: 1169496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476483

RESUMO

Background: There are considerable socioeconomic costs associated with bone defects, making regenerative medicine an increasingly attractive option for treating them. Chitosan is a natural biopolymer; it is used in approaches for sustained slow release and osteogenesis, and metformin has osteoinductivity. Our study aimed to synthesize chitosan and human serum albumin (HSA) with a metformin nanoformulation to evaluate the therapeutic effects of this nanoformulation on bone defects in vitro. Methods: A pluripotent differentiation assay was performed in vitro on mouse bone marrow mesenchymal stem cells (BMSCs). Cell Counting Kit-8 was used to detect whether metformin was toxic to BMSCs. The osteogenesis-related gene expression of osteocalcin (OCN) and osteoprotegerin (OPG) from BMSCs was tested by real-time polymerase chain reaction (PCR). HSA, metformin hydrochloride, and chitosan mixtures were magnetically stirred to finish the assembly of metformin/HSA/chitosan nanoparticles (MHC NPs). The MHC NPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FT-IR). To test the expression of OCN and OPG, western blot were used. MHC NPs were evaluated in vitro for their osteoinductivity using alkaline phosphatase (ALP). Results: BMSCs successfully differentiated into osteogenic and adipogenic lineages in vitro. According to real-time PCR, a 50 µM concentration of metformin promoted osteogenesis in BMSCs most effectively by upregulating the osteogenic markers OCN and OPG. The microstructure of MHC NPs was spherical with an average nanosize of 20 ± 4.7 nm and zeta potential of -8.3 mV. A blueshift and redshift were observed in MHC NPs following exposure to wavelengths of 1,600-1,900 and 2,000-3,700 nm, respectively. The encapsulation (%) of metformin was more than 90%. The simulation study showed that MHC NPs have good stability and it could release metformin slowly in vitro at room temperature. Upon treatment with the studied MHC NPs for 3 days, ALP was significantly elevated in BMSCs. In addition, the MHC NPs-treated BMSCs upregulated the expression of OPG and OCN, as shown by real-time PCR and western blot. Conclusion: MHC NPs have a stable metformin release effect and osteogenic ability. Therefore, as a derived synthetic biopolymer, it is expected to play a role in bone tissue regeneration.

17.
Biochem J ; 436(2): 271-82, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21443520

RESUMO

Many of the ligands involved in developmental processes require HS (heparan sulfate) to modulate signal transduction. hHS6ST2 (human heparan sulfate D-glucosaminyl 6-O-sulfotransferase-2) is a Golgi-resident enzyme that usually acts on GlcA/IdoA(2S)-GlcNAc/NS disaccharide-6-sulfate modifications within the HS sequence. Emerging evidence indicates the importance of 6-O-sulfation in a number of developmental processes. However, any correlation with cancer-related events remains largely unexplored. In the present study, we found that hHS6ST2, but not other variants, was activated in human PC (pancreatic cancer). shRNA (short hairpin RNA)-mediated silencing of endogenous hHS6ST2 expression in the PC cell line PANC-1 inhibited cell invasion and migration. hHS6ST2 knockdown also resulted in markedly reduced tumorigenesis in immunocompromised mice. To specifically explore the molecular alterations resulting from depletion of hHS6ST2-generated 6-O-sulfation, we employed two-dimensional gel electrophoresis technology followed by nano-HPLC-ESI (electrospray ionization)-tandem MS to separate and identify total proteins from PC cells. Our data suggest that hHS6ST2 potentiates Notch signalling in PC cells. We also identified a role for hHS6ST2 in the growth and tumorigenicity of these cells which, at least in part, acts through Notch-mediated EMT (epithelial-mesenchymal transition) and angiogenesis. The results of the present study suggest that hHS6ST2 could be an attractive target for PC therapy.


Assuntos
Progressão da Doença , Inativação Gênica/fisiologia , Neoplasias Pancreáticas/genética , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/fisiologia , Sulfotransferases/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/genética , Células Endoteliais/fisiologia , Feminino , Técnicas de Silenciamento de Genes/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/patologia , Receptores Notch/fisiologia , Sulfotransferases/deficiência
18.
Artigo em Inglês | MEDLINE | ID: mdl-23243437

RESUMO

Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale). In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 µM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA) suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism.

19.
Mol Biol Rep ; 38(7): 4697-704, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21127984

RESUMO

JHDM1A, a member of the JHDM (JmjC-domain-containing histone demethylase) family, plays an central role in gene silencing, cell cycle, cell growth and cancer development through histone H3K36 demethylation modification. Here reported the cloning, expression, chromosomal location and association analysis with growth traits of porcine JHDM1A gene. Sequence analysis showed that the porcine JHDM1A gene encodes 1,162 amino acids and contains JmjC, F-box, and CXXC zinc-finger domains, which coding sequence and deduced protein shares 91 and 99% similarity with human JHDM1A, respectively. Spatio-Temporal expression analysis indicated that the mRNA expression of porcine JHDM1A had significantly higher levels in the middle (65 days) and later (90 days) period's embryo skeletal muscle than that of 33 days, and showed a ubiquitously expression but with the highest abundance in kidney, lung and liver of an adult pig. Radiation hybrid mapping and the following linkage mapping data indicate that JHDM1A maps to 2p17 region of pig chromosome 2 (SSC2). Allele frequency differences were detected in different pig breeds and an association study was performed with a SNP within 3'UTR. The results showed that there is a tendency for allele frequencies to differ between the fast growth breeds (Yorkshire) and slow growth pig breeds (Qingping pigs, Yushan Black pigs, Erhualian pigs and Dahuabai pigs). The association analysis using a Berkshire × Yorkshire F(2) population indicated that the C224G polymorphism had a highly significant association with average daily gain on test (P < 0.01), a trend association with average back fat thickness (P < 0.07), and significant associations (P < 0.01) on percent of average drip loss, Fiber Type II Ratio, muscle shear force and average lactate content in µmol/g. This study provides the first evidence that JHDM1A is differentially expressed in porcine embryonic skeletal muscle and associated with meat growth and quality traits.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/enzimologia , Músculo Esquelético/crescimento & desenvolvimento , Oxirredutases N-Desmetilantes/genética , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/genética , Aumento de Peso/genética , Animais , Cruzamento , Mapeamento Cromossômico , Sequência Conservada/genética , Feto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Frequência do Gene/genética , Ligação Genética , Genótipo , Análise dos Mínimos Quadrados , Músculo Esquelético/embriologia , Fases de Leitura Aberta/genética , Especificidade de Órgãos/genética , Oxirredutases N-Desmetilantes/química , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie
20.
Planta Med ; 76(13): 1457-63, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20857541

RESUMO

Investigation of characteristic constituents of the roots of Glycyrrhiza uralensis Fischer led to isolation of four new triterpene glucuronides, namely uralsaponins C-F (1-4), an artificial product, namely the methyl ester of glycyrrhizin (5), as well as six known triterpene glucuronides (6-11). These new compounds were identified by 1D and 2D NMR spectroscopic analysis. The cytotoxicity of the selected compounds and their aglycones were evaluated against HeLa and MCF-7 cancer cell lines, and the preliminary structure-activity relationship was also elucidated.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Glycyrrhiza/química , Neoplasias/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Saponinas/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Ácido Glicirrízico/isolamento & purificação , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Células HeLa , Humanos , Estrutura Molecular , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Raízes de Plantas , Saponinas/química , Saponinas/isolamento & purificação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA