Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Antimicrob Agents Chemother ; 66(10): e0098522, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36129295

RESUMO

Resistance to antipseudomonal penicillins and cephalosporins is often driven by the overproduction of the intrinsic ß-lactamase AmpC. However, OXA-10-family ß-lactamases are a rich source of resistance in Pseudomonas aeruginosa. OXA ß-lactamases have a propensity for mutation that leads to extended spectrum cephalosporinase and carbapenemase activity. In this study, we identified isolates from a subclade of the multidrug-resistant (MDR) high risk P. aeruginosa clonal complex CC446 with a resistance to ceftazidime. A genomic analysis revealed that these isolates harbored a plasmid containing a novel allele of blaOXA-10, named blaOXA-935, which was predicted to produce an OXA-10 variant with two amino acid substitutions: an aspartic acid instead of a glycine at position 157 and a serine instead of a phenylalanine at position 153. The G157D mutation, present in OXA-14, is associated with the resistance of P. aeruginosa to ceftazidime. Compared to OXA-14, OXA-935 showed increased catalytic efficiency for ceftazidime. The deletion of blaOXA-935 restored the sensitivity to ceftazidime, and susceptibility profiling of P. aeruginosa laboratory strains expressing blaOXA-935 revealed that OXA-935 conferred ceftazidime resistance. To better understand the impacts of the variant amino acids, we determined the crystal structures of OXA-14 and OXA-935. Compared to OXA-14, the F153S mutation in OXA-935 conferred increased flexibility in the omega (Ω) loop. Amino acid changes that confer extended spectrum cephalosporinase activity to OXA-10-family ß-lactamases are concerning, given the rising reliance on novel ß-lactam/ß-lactamase inhibitor combinations, such as ceftolozane-tazobactam and ceftazidime-avibactam, to treat MDR P. aeruginosa infections.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Humanos , Ceftazidima/farmacologia , Pseudomonas aeruginosa , Inibidores de beta-Lactamases/farmacologia , Cefalosporinase/genética , Ácido Aspártico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Tazobactam/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Cefalosporinas/farmacologia , Compostos Azabicíclicos/farmacologia , Serina , Fenilalanina , Glicina , Infecções por Pseudomonas/tratamento farmacológico
2.
Clin Infect Dis ; 71(6): 1524-1531, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31583403

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a major challenge in the treatment of infections caused by Pseudomonas aeruginosa. Highly drug-resistant infections are disproportionally caused by a small subset of globally distributed P. aeruginosa sequence types (STs), termed "high-risk clones." We noted that clonal complex (CC) 446 (which includes STs 298 and 446) isolates were repeatedly cultured at 1 medical center and asked whether this lineage might constitute an emerging high-risk clone. METHODS: We searched P. aeruginosa genomes from collections available from several institutions and from a public database for the presence of CC446 isolates. We determined antibacterial susceptibility using microbroth dilution and examined genome sequences to characterize the population structure of CC446 and investigate the genetic basis of AMR. RESULTS: CC446 was globally distributed over 5 continents. CC446 isolates demonstrated high rates of AMR, with 51.9% (28/54) being multidrug-resistant (MDR) and 53.6% of these (15/28) being extensively drug-resistant (XDR). Phylogenetic analysis revealed that most MDR/XDR isolates belonged to a subclade of ST298 (designated ST298*) of which 100% (21/21) were MDR and 61.9% (13/21) were XDR. XDR ST298* was identified repeatedly and consistently at a single academic medical center from 2001 through 2017. These isolates harbored a large plasmid that carries a novel antibiotic resistance integron. CONCLUSIONS: CC446 isolates are globally distributed with multiple occurrences of high AMR. The subclade ST298* is responsible for a prolonged epidemic (≥16 years) of XDR infections at an academic medical center. These findings indicate that CC446 is an emerging high-risk clone deserving further surveillance.


Assuntos
Preparações Farmacêuticas , Infecções por Pseudomonas , Centros Médicos Acadêmicos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética
3.
Microbiol Spectr ; : e0183821, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737625

RESUMO

In an attempt to identify novel bacterial species, microbiologists have examined a wide range of environmental niches. We describe the serendipitous discovery of a novel gram-negative bacterial species from a different type of extreme niche: a purchased vial of antibiotic. The vial of antibiotic hygromycin B was found to be factory contaminated with a bacterial species, which we designate Pseudomonas hygromyciniae sp. nov. The proposed novel species belongs to the P. fluorescens complex and is most closely related to P. brenneri, P. proteolytica, and P. fluorescens. The type strain Pseudomonas hygromyciniae sp. nov. strain SDM007T (SDM007T) harbors a novel 250 kb megaplasmid which confers resistance to hygromycin B and contains numerous other genes predicted to encode replication and conjugation machinery. SDM007T grows in hygromycin concentrations of up to 5 mg/mL but does not use the antibiotic as a carbon or nitrogen source. While unable to grow at 37°C ruling out its ability to infect humans, it grows and survives at temperatures between 4 and 30°C. SDM007T can infect plants, as demonstrated by the lettuce leaf model, and is highly virulent in the Galleria mellonella infection model but is unable to infect mammalian A549 cells. These findings indicate that commercially manufactured antibiotics represent another extreme environment that may support the growth of novel bacterial species. IMPORTANCE Physical and biological stresses in extreme environments may select for bacteria not found in conventional environments providing researchers with the opportunity to not only discover novel species but to uncover new enzymes, biomolecules, and biochemical pathways. This strategy has been successful in harsh niches such as hot springs, deep ocean trenches, and hypersaline brine pools. Bacteria belonging to the Pseudomonas species are often found to survive in these unusual environments, making them relevant to healthcare, food, and manufacturing industries. Their ability to survive in a variety of environments is mainly due to the high genotypic and phenotypic diversity displayed by this genus. In this study, we discovered a novel Pseudomonas sp. from a desiccated environment of a sealed antibiotic bottle that was considered sterile. A close genetic relationship with its phylogenetic neighbors reiterated the need to use not just DNA-based tools but also biochemical characteristics to accurately classify this organism.

4.
IDCases ; 29: e01593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966277

RESUMO

Infections with multidrug resistant (MDR) Enterococcus faecium (Efm) are a growing problem. Vancomycin resistance in enterococci has long challenged treatment, necessitating the use of linezolid or daptomycin. Subsequently, daptomycin-, linezolid-, vancomycin-resistant Efm (DLVRE) infections have emerged. Case reports and guidelines for treating DLVRE infections are limited. Here, we describe the clinical and laboratory management of an MDR Efm protracted intraabdominal (IA) infection and breakthrough DLVRE bacteremia. Serial Efm resistance was evaluated using whole genome sequencing (WGS), susceptibility testing, and synergy analysis. Prior to in vitro synergy testing, combination antimicrobial therapy with daptomycin (DAP) and ceftaroline (CPT) was employed to treat the patient's central line-associated DLVRE bloodstream infection. In vitro antimicrobial testing revealed no synergy between daptomycin and ceftaroline; however, the patient's bacteremia cleared following initiation of both in conjunction with catheter removal. Sequencing of the DLVRE isolates revealed multiple genomic mutations which explained both linezolid and daptomycin resistance phenotypes and confirmed the presence of a plasmid containing the vanA operon. Sequential WGS of two additional bacterial isolates from the same patient revealed protracted colonization with a single DLVRE clone and suggested the development of bacterial subpopulations. Pairing clinical isolate susceptibilities with WGS and synergy testing should be encouraged in clinical practice to better inform antimicrobial management in cases of multidrug resistance.

5.
Trends Microbiol ; 29(7): 621-633, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33455849

RESUMO

The advent of inexpensive and rapid sequencing technologies has allowed bacterial whole-genome sequences to be generated at an unprecedented pace. This wealth of information has revealed an unanticipated degree of strain-to-strain genetic diversity within many bacterial species. Awareness of this genetic heterogeneity has corresponded with a greater appreciation of intraspecies variation in virulence. A number of comparative genomic strategies have been developed to link these genotypic and pathogenic differences with the aim of discovering novel virulence factors. Here, we review recent advances in comparative genomic approaches to identify bacterial virulence determinants, with a focus on genome-wide association studies and machine learning.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Genoma Bacteriano , Estudo de Associação Genômica Ampla/métodos , Aprendizado de Máquina , Fatores de Virulência/genética , Bactérias/classificação , Variação Genética , Genômica , Genótipo , Filogenia , Virulência/genética
6.
mSystems ; 6(5): e0019421, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519526

RESUMO

Carbapenem-resistant Klebsiella pneumoniae strains cause severe infections that are difficult to treat. The production of carbapenemases such as the K. pneumoniae carbapenemase (KPC) is a common mechanism by which these strains resist killing by the carbapenems. However, the degree of phenotypic carbapenem resistance (MIC) may differ markedly between isolates with similar carbapenemase genes, suggesting that our understanding of the underlying mechanisms of carbapenem resistance remains incomplete. To address this problem, we determined the whole-genome sequences of 166 K. pneumoniae clinical isolates resistant to meropenem, imipenem, or ertapenem. Multiple linear regression analysis of this collection of largely blaKPC-3-containing sequence type 258 (ST258) isolates indicated that blaKPC copy number and some outer membrane porin gene mutations were associated with higher MICs to carbapenems. A trend toward higher MICs was also observed with those blaKPC genes carried by the d isoform of Tn4401. In contrast, ompK37 mutations were associated with lower carbapenem MICs, and extended spectrum ß-lactamase genes were not associated with higher or lower MICs in carbapenem-resistant K. pneumoniae. A machine learning approach based on the whole-genome sequences of these isolates did not result in a substantial improvement in prediction of isolates with high or low MICs. These results build upon previous findings suggesting that multiple factors influence the overall carbapenem resistance levels in carbapenem-resistant K. pneumoniae isolates. IMPORTANCE Klebsiella pneumoniae can cause severe infections in the blood, urinary tract, and lungs. Resistance to carbapenems in K. pneumoniae is an urgent public health threat, since it can make these isolates difficult to treat. While individual contributors to carbapenem resistance in K. pneumoniae have been studied, few reports explore their combined effects in clinical isolates. We sequenced 166 clinical carbapenem-resistant K. pneumoniae isolates to evaluate the contribution of known genes to carbapenem MICs and to try to identify novel genes associated with higher carbapenem MICs. The blaKPC copy number and some outer membrane porin gene mutations were associated with higher carbapenem MICs. In contrast, mutations in one specific porin, ompK37, were associated with lower carbapenem MICs. Machine learning did not result in a substantial improvement in the prediction of carbapenem resistance nor did it identify novel genes associated with carbapenem resistance. These findings enhance our understanding of the many contributors to carbapenem resistance in K. pneumoniae.

7.
Microbiol Resour Announc ; 9(3)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948967

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium that is a major cause of nosocomial infections worldwide. Here, we present the complete genome sequence of TK421, a clinical bacteremia isolate containing a hypervirulence plasmid carrying tra-associated conjugation machinery genes. Emergence of conjugative hypervirulence plasmids could portend rapid dissemination of hypervirulence among multidrug-resistant K. pneumoniae strains.

8.
mBio ; 11(4)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843552

RESUMO

Variation in the genome of Pseudomonas aeruginosa, an important pathogen, can have dramatic impacts on the bacterium's ability to cause disease. We therefore asked whether it was possible to predict the virulence of P. aeruginosa isolates based on their genomic content. We applied a machine learning approach to a genetically and phenotypically diverse collection of 115 clinical P. aeruginosa isolates using genomic information and corresponding virulence phenotypes in a mouse model of bacteremia. We defined the accessory genome of these isolates through the presence or absence of accessory genomic elements (AGEs), sequences present in some strains but not others. Machine learning models trained using AGEs were predictive of virulence, with a mean nested cross-validation accuracy of 75% using the random forest algorithm. However, individual AGEs did not have a large influence on the algorithm's performance, suggesting instead that virulence predictions are derived from a diffuse genomic signature. These results were validated with an independent test set of 25 P. aeruginosa isolates whose virulence was predicted with 72% accuracy. Machine learning models trained using core genome single-nucleotide variants and whole-genome k-mers also predicted virulence. Our findings are a proof of concept for the use of bacterial genomes to predict pathogenicity in P. aeruginosa and highlight the potential of this approach for predicting patient outcomes.IMPORTANCEPseudomonas aeruginosa is a clinically important Gram-negative opportunistic pathogen. P. aeruginosa shows a large degree of genomic heterogeneity both through variation in sequences found throughout the species (core genome) and through the presence or absence of sequences in different isolates (accessory genome). P. aeruginosa isolates also differ markedly in their ability to cause disease. In this study, we used machine learning to predict the virulence level of P. aeruginosa isolates in a mouse bacteremia model based on genomic content. We show that both the accessory and core genomes are predictive of virulence. This study provides a machine learning framework to investigate relationships between bacterial genomes and complex phenotypes such as virulence.


Assuntos
Genoma Bacteriano , Aprendizado de Máquina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Virulência , Algoritmos , Animais , Bacteriemia/microbiologia , Feminino , Genômica , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Estudo de Prova de Conceito , Infecções por Pseudomonas/microbiologia , Virulência/genética
9.
JCI Insight ; 1(10)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27478874

RESUMO

Atopic dermatitis (AD) is characterized by reduced barrier function, reduced innate immune activation, and susceptibility to Staphylococcus aureus. Host susceptibility factors are suggested by monogenic disorders associated with AD-like phenotypes and can be medically modulated. S. aureus contributes to AD pathogenesis and can be mitigated by antibiotics and bleach baths. Recent work has revealed that the skin microbiome differs significantly between healthy controls and patients with AD, including decreased Gram-negative bacteria in AD. However, little is known about the potential therapeutic benefit of microbiome modulation. To evaluate whether parameters of AD pathogenesis are altered after exposure to different culturable Gram-negative bacteria (CGN) collected from human skin, CGN were collected from healthy controls and patients with AD. Then, effects on cellular and culture-based models of immune, epithelial, and bacterial function were evaluated. Representative strains were evaluated in the MC903 mouse model of AD. We found that CGN taken from healthy volunteers but not from patients with AD were associated with enhanced barrier function, innate immunity activation, and control of S. aureus. Treatment with CGN from healthy controls improved outcomes in a mouse model of AD. These findings suggest that a live-biotherapeutic approach may hold promise for treatment of patients with AD.

11.
PLoS One ; 10(4): e0124280, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909449

RESUMO

The response to multi-drug resistant bacterial infections must be a global priority. While mounting resistance threatens to create what the World Health Organization has termed a "post-antibiotic era", the recent discovery that antibiotic use may adversely impact the microbiome adds further urgency to the need for new developmental approaches for anti-pathogen treatments. Methicillin-resistant Staphylococcus aureus (MRSA), in particular, has declared itself a serious threat within the United States and abroad. A potential solution to the problem of antibiotic resistance may not entail looking to the future for completely novel treatments, but instead looking into our history of bacteriophage therapy. This study aimed to test the efficacy, safety, and commercial viability of the use of phages to treat Staphylococcus aureus infections using the commercially available phage SATA-8505. We found that SATA-8505 effectively controls S. aureus growth and reduces bacterial viability both in vitro and in a skin infection mouse model. However, this killing effect was not observed when phage was cultured in the presence of human whole blood. SATA-8505 did not induce inflammatory responses in peripheral blood mononuclear cultures. However, phage did induce IFN gamma production in primary human keratinocyte cultures and induced inflammatory responses in our mouse models, particularly in a mouse model of chronic granulomatous disease. Our findings support the potential efficacy of phage therapy, although regulatory and market factors may limit its wider investigation and use.


Assuntos
Bacteriólise , Bacteriófagos , Interações Hospedeiro-Patógeno , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia , Animais , Modelos Animais de Doenças , Humanos , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/virologia , Camundongos , Viabilidade Microbiana , Infecções Estafilocócicas/metabolismo
12.
PLoS One ; 9(1): e87181, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489864

RESUMO

The "Western diet" is characterized by increased intake of saturated and omega-6 (n-6) fatty acids with a relative reduction in omega-3 (n-3) consumption. These fatty acids can directly and indirectly modulate the gut microbiome, resulting in altered host immunity. Omega-3 fatty acids can also directly modulate immunity through alterations in the phospholipid membranes of immune cells, inhibition of n-6 induced inflammation, down-regulation of inflammatory transcription factors, and by serving as pre-cursors to anti-inflammatory lipid mediators such as resolvins and protectins. We have previously shown that consumption by breeder mice of diets high in saturated and n-6 fatty acids have inflammatory and immune-modulating effects on offspring that are at least partially driven by vertical transmission of altered gut microbiota. To determine if parental diets high in n-3 fatty acids could also affect offspring microbiome and immunity, we fed breeding mice an n-3-rich diet with 40% calories from fat and measured immune outcomes in their offspring. We found offspring from mice fed diets high in n-3 had altered gut microbiomes and modestly enhanced anti-inflammatory IL-10 from both colonic and splenic tissue. Omega-3 pups were protected during peanut oral allergy challenge with small but measurable alterations in peanut-related serologies. However, n-3 pups displayed a tendency toward worsened responses during E. coli sepsis and had significantly worse outcomes during Staphylococcus aureus skin infection. Our results indicate excess parental n-3 fatty acid intake alters microbiome and immune response in offspring.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Imunidade Inata , Microbiota , Fenômenos Fisiológicos da Nutrição Pré-Natal/imunologia , Animais , Bacteroidetes , Colo/imunologia , Colo/microbiologia , Resistência à Doença , Infecções por Escherichia coli/imunologia , Feminino , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Lipopolissacarídeos , Masculino , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Sepse/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA