Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2121821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36650907

RESUMO

The mitochondrial voltage-dependent anion channel 1 (VDAC1) plays a central role in metabolism and apoptosis, which makes it a promising therapeutic target. Nevertheless, molecular mechanisms governing VDAC1 functioning remain unclear. Small-molecule ligands specifically interacting with the channel provide an attractive way of exploring its structure-function relationships and can possibly be used as founding stones for future drug-candidates. While around 30 VDAC1 ligands have been identified over the years, various techniques have been used by research teams, making a fair and direct comparison between compounds impossible. To tackle this issue, we performed ligand-binding assays on a representative set of seventeen known VDAC1 ligands using nano-differential scanning fluorimetry and microscale thermophoresis. While all the compounds have been confirmed as VDAC1 ligands by at least one method, combining both technologies lead to the selection of four molecules (cannabidiol, curcumin, DIDS and VBIT4) as chemical starting points for future design of VDAC1 selective ligands.


Assuntos
Canabidiol , Canal de Ânion 1 Dependente de Voltagem , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Mitocôndrias/metabolismo , Apoptose , Canabidiol/metabolismo
2.
PLoS Comput Biol ; 17(2): e1008750, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577583

RESUMO

The voltage-dependent anion channel (VDAC) is a critical ß-barrel membrane protein of the mitochondrial outer membrane, which regulates the transport of ions and ATP between mitochondria and the cytoplasm. In addition, VDAC plays a central role in the control of apoptosis and is therefore of great interest in both cancer and neurodegenerative diseases. Although not fully understood, it is presumed that the gating mechanism of VDAC is governed by its N-terminal region which, in the open state of the channel, exhibits an α-helical structure positioned midway inside the pore and strongly interacting with the ß-barrel wall. In the present work, we performed molecular simulations with a recently developed force field for disordered systems to shed new light on known experimental results, showing that the N-terminus of VDAC is an intrinsically disordered region (IDR). First, simulation of the N-terminal segment as a free peptide highlighted its disordered nature and the importance of using an IDR-specific force field to properly sample its conformational landscape. Secondly, accelerated dynamics simulation of a double cysteine VDAC mutant under applied voltage revealed metastable low conducting states of the channel representative of closed states observed experimentally. Related structures were characterized by partial unfolding and rearrangement of the N-terminal tail, that led to steric hindrance of the pore. Our results indicate that the disordered properties of the N-terminus are crucial to properly account for the gating mechanism of VDAC.


Assuntos
Apoptose , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Canal de Ânion 1 Dependente de Voltagem/química , Algoritmos , Animais , Ânions , Simulação por Computador , Cristalografia por Raios X , Cisteína/química , Bicamadas Lipídicas/química , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Neoplasias/metabolismo , Peptídeos/química , Desnaturação Proteica , Domínios Proteicos , Software
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163095

RESUMO

The voltage-dependent anion channel 1 (VDAC1) is a crucial mitochondrial transporter that controls the flow of ions and respiratory metabolites entering or exiting mitochondria. As a voltage-gated channel, VDAC1 can switch between a high-conducting "open" state and a low-conducting "closed" state emerging at high transmembrane (TM) potentials. Although cell homeostasis depends on channel gating to regulate the transport of ions and metabolites, structural hallmarks characterizing the closed states remain unknown. Here, we performed microsecond accelerated molecular dynamics to highlight a vast region of VDAC1 conformational landscape accessible at typical voltages known to promote closure. Conformers exhibiting durable subconducting properties inherent to closed states were identified. In all cases, the low conductance was due to the particular positioning of an unfolded part of the N-terminus, which obstructed the channel pore. While the N-terminal tail was found to be sensitive to voltage orientation, our models suggest that stable low-conducting states of VDAC1 predominantly take place from disordered events and do not result from the displacement of a voltage sensor or a significant change in the pore. In addition, our results were consistent with conductance jumps observed experimentally and corroborated a recent study describing entropy as a key factor for VDAC gating.


Assuntos
Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Conformação Proteica , Canal de Ânion 1 Dependente de Voltagem/química , Animais , Camundongos , Modelos Moleculares
4.
Small ; 17(1): e2003560, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295102

RESUMO

Tubulin is an electrostatically negative protein that forms cylindrical polymers termed microtubules, which are crucial for a variety of intracellular roles. Exploiting the electrostatic behavior of tubulin and microtubules within functional microfluidic and optoelectronic devices is limited due to the lack of understanding of tubulin behavior as a function of solvent composition. This work displays the tunability of tubulin surface charge using dimethyl sulfoxide (DMSO) for the first time. Increasing the DMSO volume fractions leads to the lowering of tubulin's negative surface charge, eventually causing it to become positive in solutions >80% DMSO. As determined by electrophoretic mobility measurements, this change in surface charge is directionally reversible, i.e., permitting control between -1.5 and + 0.2 cm2  (V s)-1 . When usually negative microtubules are exposed to these conditions, the positively charged tubulin forms tubulin sheets and aggregates, as revealed by an electrophoretic transport assay. Fluorescence-based experiments also indicate that tubulin sheets and aggregates colocalize with negatively charged g-C3 N4 sheets while microtubules do not, further verifying the presence of a positive surface charge. This study illustrates that tubulin and its polymers, in addition to being mechanically robust, are also electrically tunable.


Assuntos
Polímeros , Tubulina (Proteína) , Microtúbulos , Eletricidade Estática
5.
Bioorg Med Chem ; 32: 116014, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465696

RESUMO

Colchicine is a plant alkaloid with a broad spectrum of biological and pharmacological properties. It has found application as an anti-inflammatory agent and also shows anticancer effects through its ability to destabilize microtubules by preventing tubulin dimers from polymerizing leading to mitotic death. However, adverse side effects have so far restricted its use in cancer therapy. This has led to renewed efforts to identify less toxic derivatives. In this article, we describe the synthesis of a set of novel double- and triple-modified colchicine derivatives. These derivatives were tested against primary acute lymphoblastic leukemia (ALL-5) cells and several established cancer cell lines including A549, MCF-7, LoVo and LoVo/DX. The novel derivatives were active in the low nanomolar range, with 7-deacetyl-10-thiocolchicine analogues more potent towards ALL-5 cells while 4-iodo-7-deacetyl-10-thiocolchicine analogues slightly more effective towards the LoVo cell line. Moreover, most of the synthesized compounds showed a favorable selectivity index (SI), particularly for ALL-5 and LoVo cell lines. Cell cycle analysis of the most potent molecules on ALL-5 and MCF-7 cell lines revealed contrasting effects, where M-phase arrest was observed in MCF-7 cells but not in ALL-5 cells. Molecular docking studies of all derivatives to the colchicine-binding site were performed and it was found that five of the derivatives showed strong ß-tubulin binding energies, lower than -8.70 kcal/mol, while the binding energy calculated for colchicine is -8.09 kcal/mol. The present results indicate that 7-deacetyl-10-thiocolchicine and 4-iodo-7-deacetyl-10-thiocolchicine analogues constitute promising lead compounds as chemotherapy agents against several types of cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Colchicina/análogos & derivados , Simulação de Acoplamento Molecular , Animais , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colchicina/síntese química , Colchicina/química , Colchicina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Relação Estrutura-Atividade
6.
Bioorg Chem ; 97: 103664, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32106039

RESUMO

Colchicine belongs to a large group of microtubule polymerization inhibitors. Although the anti-cancer activity of colchicine and its derivatives has been established, none of them has found commercial application in cancer treatment due to side effects. Therefore, we designed and synthesized a series of six triple-modified 4-chlorothiocolchicine analogues with amide moieties and one urea derivative. These novel derivatives were tested against several different cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and primary acute lymphoblastic leukemia (ALL) cells and they showed activity in the nanomolar range. The obtained IC50 values for novel derivatives were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies of colchicine and selected analogues were undertaken to indicate that they induced apoptotic cell death in ALL-5 cells. We also performed in silico studies to predict binding modes of the 4-chlorothiocolchicine derivatives to different ß tubulin isotypes. The results indicate that select triple-modified 4-chlorothiocolchicine derivatives represent highly promising novel cancer chemotherapeutics.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Colchicina/análogos & derivados , Amidas/síntese química , Amidas/química , Amidas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colchicina/síntese química , Colchicina/química , Colchicina/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
7.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650369

RESUMO

Cytochrome P450 monooxygenases (CYPs/P450s) are well known for their role in organisms' primary and secondary metabolism. Among 20 P450s of the tuberculosis-causing Mycobacterium tuberculosis H37Rv, CYP128A1 is particularly important owing to its involvement in synthesizing electron transport molecules such as menaquinone-9 (MK9). This study employs different in silico approaches to understand CYP128 P450 family's distribution and structural aspects. Genome data-mining of 4250 mycobacterial species has revealed the presence of 2674 CYP128 P450s in 2646 mycobacterial species belonging to six different categories. Contrast features were observed in the CYP128 gene distribution, subfamily patterns, and characteristics of the secondary metabolite biosynthetic gene cluster (BGCs) between M. tuberculosis complex (MTBC) and other mycobacterial category species. In all MTBC species (except one) CYP128 P450s belong to subfamily A, whereas subfamily B is predominant in another four mycobacterial category species. Of CYP128 P450s, 78% was a part of BGCs with CYP124A1, or together with CYP124A1 and CYP121A1. The CYP128 family ranked fifth in the conservation ranking. Unique amino acid patterns are present at the EXXR and CXG motifs. Molecular dynamic simulation studies indicate that the CYP128A1 bind to MK9 with the highest affinity compared to the azole drugs analyzed. This study provides comprehensive comparative analysis and structural insights of CYP128A1 in M. tuberculosis.


Assuntos
Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Preparações Farmacêuticas/metabolismo , Genoma Bacteriano/genética , Simulação de Dinâmica Molecular , Família Multigênica/genética , Ligação Proteica/genética , Metabolismo Secundário/genética
8.
Biophys J ; 117(6): 1125-1135, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31477241

RESUMO

Intrinsically disordered proteins often play an important role in protein aggregation. However, it is challenging to determine the structures and interactions that drive the early stages of aggregation because they are transient and obscured in a heterogeneous mixture of disordered states. Even computational methods are limited because the lack of ordered structure makes it difficult to ensure that the relevant conformations are sampled. We address these challenges by integrating atomistic simulations with high-resolution single-molecule measurements reported previously, using the measurements to help discern which parts of the disordered ensemble of structures in the simulations are most probable while using the simulations to identify residues and interactions that are important for oligomer stability. This approach was applied to α-synuclein, an intrinsically disordered protein that aggregates in the context of Parkinson's disease. We simulated single-molecule pulling experiments on dimers, the minimal oligomer, and compared them to force spectroscopy measurements. Force-extension curves were simulated starting from a set of 66 structures with substantial structured content selected from the ensemble of dimer structures generated at zero force via Monte Carlo simulations. The pattern of contour length changes as the structures unfolded through intermediate states was compared to the results from optical trapping measurements on the same dimer to discern likely structures occurring in the measurements. Simulated pulling curves were generally consistent with experimental data but with a larger number of transient intermediates. We identified an ensemble of ß-rich dimer structures consistent with the experimental data from which dimer interfaces could be deduced. These results suggest specific druggable targets in the structural motifs of α-synuclein that may help prevent the earliest steps of oligomerization.


Assuntos
Simulação de Dinâmica Molecular , Agregados Proteicos , Imagem Individual de Molécula , alfa-Sinucleína/química , Fenômenos Biomecânicos , Método de Monte Carlo , Multimerização Proteica , Estrutura Secundária de Proteína
9.
J Comput Aided Mol Des ; 33(9): 817-829, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31578656

RESUMO

Molecular docking is a well-established computational technique that aims to predict how a ligand binds to a specific protein target, as well as to assess the strength of the binding. Although docking programs are used worldwide for drug discovery, it is not always simple to identify which program or combination of programs provides the best results for a target of interest. Here we present DockBox, a computational package designed to facilitate the use of multiple docking and scoring programs allowing to combine them using different consensus strategies. As part of the DockBox package, a new consensus docking method called score-based consensus docking (SBCD) is introduced. SBCD was found to significantly improve the pose prediction success rates of single docking programs. When applied to virtual screening, SBCD enhanced enrichment factors while producing higher hit rates than standard consensus docking (CD). SBCD can be run with almost no additional computational cost and time compared to CD, if the same docking programs are used for pose generation. Furthermore, SBCD allows the use of many scoring functions to assess consensus without significant overhead, making it a promising new approach for the screening of large chemical libraries. DockBox is an open-source package publicly available at https://pypi.org/project/dockbox .


Assuntos
Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Software , Algoritmos , Descoberta de Drogas/métodos , Humanos , Ligantes , Bibliotecas de Moléculas Pequenas/química
10.
Bioorg Med Chem ; 27(23): 115144, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653441

RESUMO

Colchicine is the major alkaloid isolated from the plant Colchicum autumnale, which shows strong therapeutic effects towards different types of cancer. However, due to the toxicity of colchicine towards normal cells its application is limited. To address this issue we synthesized a series of seven triple-modified 4-bromothiocolchicine analogues with amide moieties. These novel derivatives were active in the nanomolar range against several different cancer cell lines and primary acute lymphoblastic leukemia cells, specifically compounds: 5-9 against primary ALL-5 (IC50 = 5.3-14 nM), 5, 7-9 against A549 (IC50 = 10 nM), 5, 7-9 against MCF-7 (IC50 = 11 nM), 5-9 against LoVo (IC50 = 7-12 nM), and 5, 7-9 against LoVo/DX (IC50 = 48-87 nM). These IC50 values were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies revealed that colchicine and selected analogues induced characteristics of apoptotic cell death but manifested their effects in different phases of the cell cycle in MCF-7 versus ALL-5 cells. Specifically, while colchicine and the studied derivatives arrested MCF-7 cells in mitosis, very little mitotically arrested ALL-5 cells were observed, suggesting effects were manifest instead in interphase. We also developed an in silico model of the mode of binding of these compounds to their primary target, ß-tubulin. We conducted a correlation analysis (linear regression) between the calculated binding energies of colchicine derivatives and their anti-proliferative activity, and determined that the obtained correlation coefficients strongly depend on the type of cells used.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Colchicina/análogos & derivados , Neoplasias/tratamento farmacológico , Células A549 , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Colchicina/síntese química , Colchicina/química , Colchicina/farmacologia , Desenho de Fármacos , Halogenação , Humanos , Células MCF-7 , Mitose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
11.
J Biol Phys ; 43(2): 167-184, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28197797

RESUMO

Fröhlich's model equations describing phonon condensation in open systems of biological relevance are reinvestigated within a semi-classical statistical framework. The main assumptions needed to deduce Fröhlich's rate equations are identified and it is shown how they lead us to write an appropriate form for the corresponding master equation. It is shown how solutions of the master equation can be numerically computed and can highlight typical features of the condensation effect. Our approach provides much more information compared to the existing ones as it allows to investigate the time evolution of the probability density function instead of following single averaged quantities. The current work is also motivated, on the one hand, by recent experimental evidences of long-lived excited modes in the protein structure of hen-egg white lysozyme, which were reported as a consequence of the condensation effect, and, on the other hand, by a growing interest in investigating long-range effects of electromagnetic origin and their influence on the dynamics of biochemical reactions.


Assuntos
Modelos Teóricos , Estatística como Assunto , Termodinâmica
12.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28767055

RESUMO

Tubulin is the target for many small-molecule natural compounds, which alter microtubules dynamics, and lead to cell cycle arrest and apoptosis. One of these compounds is colchicine, a plant alkaloid produced by Colchicum autumnale. While C. autumnale produces a potent cytotoxin, colchicine, and expresses its target protein, it is immune to colchicine's cytotoxic action and the mechanism of this resistance is hitherto unknown. In the present paper, the molecular mechanisms responsible for colchicine resistance in C. autumnale are investigated and compared to human tubulin. To this end, homology models for C. autumnale α-ß tubulin heterodimer are created and molecular dynamics (MD) simulations together with molecular mechanics Poisson-Boltzmann calculations (MM/PBSA) are performed to determine colchicine's binding affinity for tubulin. Using our molecular approach, it is shown that the colchicine-binding site in C. autumnale tubulin contains a small number of amino acid substitutions compared to human tubulin. However, these substitutions induce significant reduction in the binding affinity for tubulin, and subsequently fewer conformational changes in its structure result. It is suggested that such small conformational changes are insufficient to profoundly disrupt microtubule dynamics, which explains the high resistance to colchicine by C. autumnale.


Assuntos
Colchicina/química , Colchicum/química , Modelos Moleculares , Tubulina (Proteína)/química , Colchicina/metabolismo , Colchicum/genética , Colchicum/metabolismo , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
Chaos ; 26(12): 123116, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28039969

RESUMO

Almost five decades ago, H. Fröhlich [H. Fröhlich, "Long-range coherence and energy storage in biological systems," Int. J. Quantum Chem. 2(5), 641-649 (1968)] reported, on a theoretical basis, that the excitation of quantum modes of vibration in contact with a thermal reservoir may lead to steady states, where under high enough rate of energy supply, only specific low-frequency modes of vibration are strongly excited. This nonlinear phenomenon was predicted to occur in biomolecular systems, which are known to exhibit complex vibrational spectral properties, especially in the terahertz frequency domain. However, since the effects of terahertz or lower-frequency modes are mainly classical at physiological temperatures, there are serious doubts that Fröhlich's quantum description can be applied to predict such a coherent behavior in a biological environment, as suggested by the author. In addition, a quantum formalism makes the phenomenon hard to investigate using realistic molecular dynamics simulations (MD) as they are usually based on the classical principles. In the current paper, we provide a general classical Hamiltonian description of a nonlinear open system composed of many degrees of freedom (biomolecular structure) excited by an external energy source. It is shown that a coherent behaviour similar to Fröhlich's effect is to be expected in the classical case for a given range of parameter values. Thus, the supplied energy is not completely thermalized but stored in a highly ordered fashion. The connection between our Hamiltonian description, carried out in the space of normal modes, and a more standard treatment in the physical space is emphasized in order to facilitate the prediction of the effect from MD simulations. It is shown how such a coherent phenomenon may induce long-range resonance effects that could be of critical importance at the biomolecular level. The present work is motivated by recent experimental evidences of long-lived excited low-frequency modes in protein structures, which were reported as a consequence of the Fröhlich's effect.


Assuntos
Vibração , Simulação de Dinâmica Molecular , Teoria Quântica
14.
Phys Chem Chem Phys ; 16(36): 19181-91, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24955434

RESUMO

The reaction pathways characterizing macromolecular systems of biological interest are associated with high free energy barriers. Resorting to the standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed to observe the relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover, extended DM-d-MD was combined with a reweighting scheme enabling to save on-the-fly information about the Boltzmann distribution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling, the Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of one order of magnitude with respect to plain MD simulations. For alanine-12, our algorithm allows us to highlight all important unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount of computational time by plain MD simulations. Our method is reaction coordinate free, shows little dependence on the a priori knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is known.


Assuntos
Simulação de Dinâmica Molecular , Algoritmos , Difusão
15.
Methods Mol Biol ; 2700: 39-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603173

RESUMO

Toll-like receptors (TLRs) represent attractive targets for developing modulators for the treatment of many pathologies, including inflammation, cancer, and autoimmune diseases. Here, we describe a protocol based on the DockBox package that enables to set up and perform structure-based virtual screening in order to increase the chance of identifying novel TLR ligands from chemical libraries.


Assuntos
Doenças Autoimunes , Humanos , Ligantes , Inflamação , Bibliotecas de Moléculas Pequenas/farmacologia , Receptores Toll-Like
16.
Expert Opin Drug Discov ; 18(9): 987-1009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466331

RESUMO

INTRODUCTION: In fragment-based drug design, fragment linking is a popular strategy where two fragments binding to different sub-pockets of a target are linked together. This attractive method remains challenging especially due to the design of ideal linkers. AREAS COVERED: The authors review the types of linkers and chemical reactions commonly used to the synthesis of linkers, including those utilized in protein-templated fragment self-assembly, where fragments are directly linked in the presence of the protein. Finally, they detail computational workflows and software including generative models that have been developed for fragment linking. EXPERT OPINION: The authors believe that fragment linking offers key advantages for compound design, particularly for the design of bivalent inhibitors linking two distinct pockets of the same or different subunits. On the other hand, more studies are needed to increase the potential of protein-templated approaches in FBDD. Important computational tools such as structure-based de novo software are emerging to select suitable linkers. Fragment linking will undoubtedly benefit from developments in computational approaches and machine learning models.


Assuntos
Desenho de Fármacos , Software , Humanos , Proteínas
17.
Small GTPases ; 12(2): 147-160, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31601145

RESUMO

Rho proteins are signalling molecules that control cellular dynamics, movement and morphological changes. They are activated by Rho guanine-nucleotide exchange factors (Rho GEFs) that transduce upstream signals into Rho-mediated activation of downstream processes. Fgd5 is a Rho GEF involved in angiogenesis and its target Rho protein for this process has been linked to Cdc42 activation. Here, we examined the function of purified Fgd5, specifically, which Rho proteins it activates and pinpoint the structural domains required for enzymatic activity. Using a GEF enzyme assay, we found that purified Fgd5 showed preferential activation of Rac1 and direct binding of Rac1 in pull-down and co-immunoprecipitation assays. Structural comparisons showed that the Fgd5 DH domain is highly similar to the Rac1 GEF, TrioN, supporting a role for Fgd5 as a Rac1 GEF. Compounds that bind to purified Fgd5 DH-PH protein were identified by screening a small molecule library via surface plasmon resonance. The effects of eleven ligands were further examined for their ability to inhibit the Fgd5 GEF enzymatic activity and Rac1 interaction. From these studies, we found that the compound aurintricarboxylic acid, and to a lesser extent mitoxantrone dihydrochloride, inhibited both Fgd5 GEF activation of Rac1 and their interaction. Aurintricarboxylic acid had no effect on the activity or binding of the Rac1 GEF, TrioN, thus demonstrating the feasibility of selectively disrupting Rho GEF activators. Abbreviations: a.a.: amino acid; ATA: aurintricarboxylic acid; DH: Dbl homology; DOCK: dictator of cytokinesis; Fgd: faciogenital dysplasia; GEF: guanine-nucleotide exchange factor; GST: glutathione S-transferase; LOPAC: library of pharmacologically active compounds; PH: pleckstrin homology; PDB: protein data bank; s.e.m.: standard error of the mean; SPR: surface plasmon resonance.


Assuntos
Ácido Aurintricarboxílico
18.
Clin Transl Sci ; 14(3): 847-858, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278334

RESUMO

Positron emission tomography (PET) using 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG), a marker of energy metabolism and cell proliferation, is routinely used in the clinic to assess patient response to chemotherapy and to monitor tumor growth. Treatment with some tyrosine kinase inhibitors (TKIs) causes changes in blood glucose levels in both nondiabetic and diabetic patients. We evaluated the interaction of several classes of TKIs with human glucose transporter-1 (hGLUT-1) in FaDu and GIST-1 cells by measuring [3 H]2-deoxy-d-glucose ([3 H]2-DG) and [3 H]FDG uptake. Uptake of both was inhibited to varying extents by the TKIs, and representative TKIs from each class showed competitive inhibition of [3 H]2-DG uptake. In GIST-1 cells, [3 H]FDG uptake inhibition by temsirolimus and nilotinib was irreversible, whereas inhibition by imatinib, gefitinib, and pazopanib was reversible. Molecular modeling studies showed that TKIs form multiple hydrogen bonds with polar residues of the sugar binding site (i.e., Q161, Q282, Q283, N288, N317, and W388), and van der Waals interactions with the H-pocket site. Our results showed interaction of TKIs with amino acid residues at the glucose binding site to inhibit glucose uptake by hGLUT-1. We hypothesize that inhibition of hGLUT-1 by TKIs could alter glucose levels in patients treated with TKIs, leading to hypoglycemia and fatigue, although further studies are required to evaluate roles of other SLC2 and SLC5 members. In addition, TKIs could affect tumor [18 F]FDG uptake, increasingly used as a marker of tumor response. The hGLUT-1 inhibition by TKIs may have implications for routine [18 F]FDG-PET monitoring of tumor response in patients.


Assuntos
Fluordesoxiglucose F18/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Interações Medicamentosas , Transportador de Glucose Tipo 1/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica
19.
Eur J Med Chem ; 215: 113275, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618157

RESUMO

Combretastatin A-4 inspired heterocyclic derivatives were synthesized and evaluated for their biological activities on tubulin polymerization and cell proliferation. Among the 19 described sulfur-containing compounds, derivatives (Z)-4h and (Z)-4j exhibited interesting in cellulo tubulin polymerization inhibition and antiproliferative activities with IC50 values for six different cell lines between 8 and 27 nM. Furthermore, in silico docking studies within the colchicine/CA-4 binding site of tubulin were carried out to understand the interactions of our products with the protein target. The effects on the cell cycle of follicular lymphoma cells were also investigated at 1-10 nM concentrations showing that apoptotic processes occurred.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Tiofenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bovinos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Estilbenos/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
20.
Chem Biol Drug Des ; 95(1): 182-191, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483093

RESUMO

Colchicine is a therapeutic agent currently used in therapies of many diseases. It also shows antimitotic effects, and its high cytotoxic activity against different cancer cell lines has been demonstrated many times. To overcome the limitations of colchicine use in anticancer therapy, we synthesized a series of novel triple-modified 4-chloro-7-carbamatethiocolchicines. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX, and BALB/3T3 cell lines. Additionally, their mode of binding to ß-tubulin was evaluated in silico. The majority of triple-modified colchicine derivatives exhibited significantly higher cytotoxicity than colchicine, doxorubicin, and cisplatin against tested cancerous cell lines with much higher selectivity index values for four of them.


Assuntos
Antineoplásicos/síntese química , Colchicina/análogos & derivados , Moduladores de Tubulina , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Colchicina/síntese química , Colchicina/farmacologia , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Termodinâmica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA