RESUMO
Seven years after the declaration of the first epidemic of Ebola virus disease in Guinea, the country faced a new outbreak-between 14 February and 19 June 2021-near the epicentre of the previous epidemic1,2. Here we use next-generation sequencing to generate complete or near-complete genomes of Zaire ebolavirus from samples obtained from 12 different patients. These genomes form a well-supported phylogenetic cluster with genomes from the previous outbreak, which indicates that the new outbreak was not the result of a new spillover event from an animal reservoir. The 2021 lineage shows considerably lower divergence than would be expected during sustained human-to-human transmission, which suggests a persistent infection with reduced replication or a period of latency. The resurgence of Zaire ebolavirus from humans five years after the end of the previous outbreak of Ebola virus disease reinforces the need for long-term medical and social care for patients who survive the disease, to reduce the risk of re-emergence and to prevent further stigmatization.
Assuntos
Surtos de Doenças , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Modelos Biológicos , Animais , República Democrática do Congo/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/classificação , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Infecção Persistente/virologia , Filogenia , Sobreviventes , Fatores de Tempo , Zoonoses Virais/transmissão , Zoonoses Virais/virologiaRESUMO
The mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.1. We established that BA.1 infection in naïve Syrian hamsters resulted in a less severe disease than a comparable dose of the ancestral virus, with fewer clinical signs including less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of BA.1 50 days after an initial infection with ancestral virus. These data provide evidence that convalescent immunity against ancestral SARS-CoV-2 is protective against BA.1 in the Syrian hamster model of infection. Comparison with published pre-clinical and clinical data supports consistency of the model and its predictive value for the outcome in humans. Further, the ability to detect protection against the less severe disease caused by BA.1 demonstrates continued value of the Syrian hamster model for evaluation of BA.1-specific countermeasures.
Assuntos
COVID-19 , Animais , Cricetinae , Humanos , Convalescença , Mesocricetus , SARS-CoV-2RESUMO
The density of Borrelia burgdorferi-infected Ixodes ricinus nymphs (DIN) was investigated during 2013-2017 across a Lyme disease-endemic landscape in southern England. The density of nymphs (DON), nymph infection prevalence (NIP), and DIN varied across five different natural habitats, with the highest DIN in woodland edge and high biodiversity woodlands. DIN was significantly lower in scrub grassland compared to the woodland edge, with low DON and no evidence of infection in ticks in non-scrub grassland. Over the 5 years, DON, NIP and DIN were comparable within habitats, except in 2014, with NIP varying three-fold and DIN significantly lower compared to 2015-2017. Borrelia garinii was most common, with bird-associated Borrelia (B. garinii/valaisiana) accounting for ~70% of all typed sequences. Borrelia burgdorferi sensu stricto was more common than B. afzelii. Borrelia afzelii was more common in scrub grassland than woodland and absent in some years. The possible impact of scrub on grazed grassland, management of ecotonal woodland margins with public access, and the possible role of birds/gamebirds impacting NIP are discussed. Mean NIP was 7.6%, highlighting the potential risk posed by B. burgdorferi in this endemic area. There is a need for continued research to understand its complex ecology and identify strategies for minimizing risk to public health, through habitat/game management and public awareness.
Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Ixodes , Doença de Lyme , Animais , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , NinfaRESUMO
LamPORE is a novel diagnostic platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA combining loop-mediated isothermal amplification with nanopore sequencing, which could potentially be used to analyze thousands of samples per day on a single instrument. We evaluated the performance of LamPORE against reverse transcriptase PCR (RT-PCR) using RNA extracted from spiked respiratory samples and stored nose and throat swabs collected at two UK hospitals. The limit of detection of LamPORE was 10 genome copies/µl of extracted RNA, which is above the limit achievable by RT-PCR, but was not associated with a significant reduction of sensitivity in clinical samples. Positive clinical specimens came mostly from patients with acute symptomatic infection, and among them, LamPORE had a diagnostic sensitivity of 99.1% (226/228; 95% confidence interval [CI], 96.9% to 99.9%). Among negative clinical specimens, including 153 with other respiratory pathogens detected, LamPORE had a diagnostic specificity of 99.6% (278/279; 98.0% to 100.0%). Overall, 1.4% (7/514; 0.5% to 2.9%) of samples produced an indeterminate result on first testing, and repeat LamPORE testing on the same RNA extract had a reproducibility of 96.8% (478/494; 94.8% to 98.1%). LamPORE has a similar performance as RT-PCR for the diagnosis of SARS-CoV-2 infection in symptomatic patients and offers a promising approach to high-throughput testing.
Assuntos
COVID-19 , Sequenciamento por Nanoporos , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e EspecificidadeRESUMO
The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here, we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genome sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors of the genome segments and propose that this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, as well as codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach.IMPORTANCE The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.
Assuntos
Evolução Molecular , Genoma Viral , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Equador , Humanos , Modelos Moleculares , Conformação Proteica , Seleção Genética , América do Sul , Proteínas Virais/química , Proteínas Virais/genética , Sequenciamento Completo do GenomaRESUMO
BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.
Assuntos
Infecção Hospitalar , Influenza Humana , Nanoporos , Antivirais/uso terapêutico , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/tratamento farmacológico , Resistência a Medicamentos , Farmacorresistência Viral/genética , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/diagnóstico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Metagenoma , Neuraminidase/genética , Estações do Ano , Reino UnidoRESUMO
During February 2018-January 2019, we conducted large-scale surveillance for the presence and prevalence of tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) in sentinel animals and ticks in the United Kingdom. Serum was collected from 1,309 deer culled across England and Scotland. Overall, 4% of samples were ELISA-positive for the TBEV serocomplex. A focus in the Thetford Forest area had the highest proportion (47.7%) of seropositive samples. Ticks collected from culled deer within seropositive regions were tested for viral RNA; 5 of 2,041 ticks tested positive by LIV/TBEV real-time reverse transcription PCR, all from within the Thetford Forest area. From 1 tick, we identified a full-length genomic sequence of TBEV. Thus, using deer as sentinels revealed a potential TBEV focus in the United Kingdom. This detection of TBEV genomic sequence in UK ticks has important public health implications, especially for undiagnosed encephalitis.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Ixodidae/virologia , Animais , Cervos/parasitologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/transmissão , Ensaio de Imunoadsorção Enzimática , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Masculino , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espécies Sentinelas/virologia , Análise de Sequência de RNA , Reino Unido/epidemiologiaRESUMO
We report a case of a previously healthy man returning to the United Kingdom from Lithuania who developed rhombencephalitis and myeloradiculitis due to tick-borne encephalitis. These findings add to sparse data on tick-borne encephalitis virus phylogeny and associated neurologic syndromes and underscore the importance of vaccinating people traveling to endemic regions.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/virologia , Adulto , Anticorpos Antivirais/imunologia , Biomarcadores , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/genética , Genoma Viral , Humanos , Imageamento por Ressonância Magnética , Masculino , Filogenia , Avaliação de Sintomas , Reino UnidoRESUMO
Influenza is a major global public health threat as a result of its highly pathogenic variants, large zoonotic reservoir, and pandemic potential. Metagenomic viral sequencing offers the potential for a diagnostic test for influenza virus which also provides insights on transmission, evolution, and drug resistance and simultaneously detects other viruses. We therefore set out to apply the Oxford Nanopore Technologies sequencing method to metagenomic sequencing of respiratory samples. We generated influenza virus reads down to a limit of detection of 102 to 103 genome copies/ml in pooled samples, observing a strong relationship between the viral titer and the proportion of influenza virus reads (P = 4.7 × 10-5). Applying our methods to clinical throat swabs, we generated influenza virus reads for 27/27 samples with mid-to-high viral titers (cycle threshold [CT ] values, <30) and 6/13 samples with low viral titers (CT values, 30 to 40). No false-positive reads were generated from 10 influenza virus-negative samples. Thus, Nanopore sequencing operated with 83% sensitivity (95% confidence interval [CI], 67 to 93%) and 100% specificity (95% CI, 69 to 100%) compared to the current diagnostic standard. Coverage of full-length virus was dependent on sample composition, being negatively influenced by increased host and bacterial reads. However, at high influenza virus titers, we were able to reconstruct >99% complete sequences for all eight gene segments. We also detected a human coronavirus coinfection in one clinical sample. While further optimization is required to improve sensitivity, this approach shows promise for the Nanopore platform to be used in the diagnosis and genetic analysis of influenza virus and other respiratory viruses.
Assuntos
Influenza Humana/virologia , Metagenômica , Sequenciamento por Nanoporos , Orthomyxoviridae/genética , Biologia Computacional/métodos , Inglaterra/epidemiologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Metagenômica/métodos , Sequenciamento por Nanoporos/métodos , Orthomyxoviridae/classificação , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA ViralRESUMO
The presence of tick-borne encephalitis virus (TBEV) was detected in a questing tick pool in southern England in September 2019. Hitherto, TBEV had only been detected in a limited area in eastern England. This southern English viral genome sequence is distinct from TBEV-UK, being most similar to TBEV-NL. The new location of TBEV presence highlights that the diagnosis of tick-borne encephalitis should be considered in encephalitic patients in areas of the United Kingdom outside eastern England.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/diagnóstico , Ixodes/virologia , RNA Viral/genética , Animais , Cervos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/epidemiologia , Inglaterra/epidemiologia , Humanos , Filogenia , Estações do Ano , Estudos Soroepidemiológicos , Sequenciamento Completo do GenomaRESUMO
We report identification of an Oropouche virus strain in a febrile patient from Ecuador by using metagenomic sequencing and real-time reverse transcription PCR. Virus was isolated from patient serum by using Vero cells. Phylogenetic analysis of the whole-genome sequence showed the virus to be similar to a strain from Peru.
Assuntos
Infecções por Bunyaviridae/virologia , Orthobunyavirus/isolamento & purificação , Adulto , Animais , Infecções por Bunyaviridae/epidemiologia , Chlorocebus aethiops , Equador/epidemiologia , Humanos , Masculino , Orthobunyavirus/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células VeroRESUMO
BackgroundThe recent global emergence and re-emergence of arboviruses has caused significant human disease. Common vectors, symptoms and geographical distribution make differential diagnosis both important and challenging. AimTo investigate the feasibility of metagenomic sequencing for recovering whole genome sequences of chikungunya and dengue viruses from clinical samples.MethodsWe performed metagenomic sequencing using both the Illumina MiSeq and the portable Oxford Nanopore MinION on clinical samples which were real-time reverse transcription-PCR (qRT-PCR) positive for chikungunya (CHIKV) or dengue virus (DENV), two of the most important arboviruses. A total of 26 samples with a range of representative clinical Ct values were included in the study.ResultsDirect metagenomic sequencing of nucleic acid extracts from serum or plasma without viral enrichment allowed for virus identification, subtype determination and elucidated complete or near-complete genomes adequate for phylogenetic analysis. One PCR-positive CHIKV sample was also found to be coinfected with DENV. ConclusionsThis work demonstrates that metagenomic whole genome sequencing is feasible for the majority of CHIKV and DENV PCR-positive patient serum or plasma samples. Additionally, it explores the use of Nanopore metagenomic sequencing for DENV and CHIKV, which can likely be applied to other RNA viruses, highlighting the applicability of this approach to front-line public health and potential portable applications using the MinION.
Assuntos
Vírus Chikungunya/genética , Vírus da Dengue/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequenciamento Completo do Genoma , Anticorpos Antivirais/sangue , Antígenos Virais/sangue , Febre de Chikungunya/sangue , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/isolamento & purificação , Dengue/sangue , Dengue/diagnóstico , Vírus da Dengue/isolamento & purificação , Humanos , Metagenômica , Nanoporos , SorogrupoRESUMO
BACKGROUND: Pyrazinamide (PZA) plays an essential part in the shortened six-month tuberculosis (TB) treatment course due to its activity against slow-growing and non-replicating organisms. We tested whether PZA preferentially targets slow growing cells of Mycobacterium tuberculosis that could be representative of bacteria that remain after the initial kill with isoniazid (INH), by observing the response of either slow growing or fast growing bacilli to differing concentrations of PZA. METHODS: M. tuberculosis H37Rv was grown in continuous culture at either a constant fast growth rate (Mean Generation Time (MGT) of 23.1 h) or slow growth rate (69.3 h MGT) at a controlled dissolved oxygen tension of 10 % and a controlled acidity at pH 6.3 ± 0.1. Cultures were exposed to step-wise increases in the concentration of PZA (25 to 500 µgml(-1)) every two MGTs, and bacterial survival was measured. PZA-induced global gene expression was explored for each increase in PZA-concentration, using DNA microarray. RESULTS: At a constant pH 6.3, actively dividing mycobacteria were susceptible to PZA, with similar responses to increasing concentrations of PZA at both growth rates. Three distinct phases of drug response could be distingished for both slow growing (69.3 h MGT) and fast growing (23.1 h MGT) bacilli. A bacteriostatic phase at a low concentration of PZA was followed by a recovery period in which the culture adapted to the presence of PZA and bacteria were actively dividing in steady-state. In contrast, there was a rapid loss of viability at bactericidal concentrations. There was a notable delay in the onset of the recovery period in quickly dividing cells compared with those dividing more slowly. Fast growers and slow growers adapted to PZA-exposure via very similar mechanisms; through reduced gene expression of tRNA, 50S, and 30S ribosomal proteins. CONCLUSIONS: PZA had an equivalent level of activity against fast growing and slow growing M. tuberculosis. At both growth rates drug-tolerance to sub-lethal concentrations may have been due to reduced expression of tRNA, 50S, and 30S ribosomal proteins. The findings from this study show that PZA has utility against more than one phenotypic sub-population of bacilli and could be re-assessed for its early bactericidal activity, in combination with other drugs, during TB treatment.
Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pirazinamida/farmacologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Isoniazida/farmacologia , Mycobacterium tuberculosis/genética , RNA de Transferência/genética , Proteínas Ribossômicas/genéticaRESUMO
A key challenge in the production of second generation biofuels is the conversion of lignocellulosic substrates into fermentable sugars. Enzymes, particularly those from fungi, are a central part of this process, and many have been isolated and characterised. However, relatively little is known of how fungi respond to lignocellulose and produce the enzymes necessary for dis-assembly of plant biomass. We studied the physiological response of the fungus Aspergillus niger when exposed to wheat straw as a model lignocellulosic substrate. Using RNA sequencing we showed that, 24 hours after exposure to straw, gene expression of known and presumptive plant cell wall-degrading enzymes represents a huge investment for the cells (about 20% of the total mRNA). Our results also uncovered new esterases and surface interacting proteins that might form part of the fungal arsenal of enzymes for the degradation of plant biomass. Using transcription factor deletion mutants (xlnR and creA) to study the response to both lignocellulosic substrates and low carbon source concentrations, we showed that a subset of genes coding for degradative enzymes is induced by starvation. Our data support a model whereby this subset of enzymes plays a scouting role under starvation conditions, testing for available complex polysaccharides and liberating inducing sugars, that triggers the subsequent induction of the majority of hydrolases. We also showed that antisense transcripts are abundant and that their expression can be regulated by growth conditions.
Assuntos
Aspergillus niger/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Lignina/metabolismo , RNA Mensageiro/biossíntese , Ativação Transcricional , Aspergillus niger/enzimologia , Biomassa , Esterases/biossíntese , Esterases/genética , Proteínas Fúngicas/biossíntese , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/genética , Monossacarídeos/biossíntese , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Análise de Sequência de RNA , Transativadores/deficiência , Transativadores/genética , Triticum/metabolismoRESUMO
Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes.
Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/análise , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Caules de Planta/metabolismo , Proteoma/análise , Análise de Sequência de RNA , Triticum/metabolismoRESUMO
In this article, we present a method to delete genes in filamentous fungi that allows recycling of the selection marker and is efficient in a nonhomologous end-joining (NHEJ)-proficient strain. We exemplify the approach by deletion of the gene encoding the transcriptional regulator XlnR in the fungus Aspergillus niger. To show the efficiency and advantages of the method, we deleted 8 other genes and constructed a double mutant in this species. Moreover, we showed that the same principle also functions in a different genus of filamentous fungus (Talaromyces versatilis, basionym Penicillium funiculosum). This technique will increase the versatility of the toolboxes for genome manipulation of model and industrially relevant fungi.
Assuntos
Aspergillus niger/genética , Fungos/genética , Técnicas de Inativação de Genes/métodos , Talaromyces/genética , Proteínas Fúngicas/genética , Deleção de Genes , Transativadores/genéticaRESUMO
BACKGROUND: A major part of second generation biofuel production is the enzymatic saccharification of lignocellulosic biomass into fermentable sugars. Many fungi produce enzymes that can saccarify lignocellulose and cocktails from several fungi, including well-studied species such as Trichoderma reesei and Aspergillus niger, are available commercially for this process. Such commercially-available enzyme cocktails are not necessarily representative of the array of enzymes used by the fungi themselves when faced with a complex lignocellulosic material. The global induction of genes in response to exposure of T. reesei to wheat straw was explored using RNA-seq and compared to published RNA-seq data and model of how A. niger senses and responds to wheat straw. RESULTS: In T. reesei, levels of transcript that encode known and predicted cell-wall degrading enzymes were very high after 24h exposure to straw (approximately 13% of the total mRNA) but were less than recorded in A. niger (approximately 19% of the total mRNA). Closer analysis revealed that enzymes from the same glycoside hydrolase families but different carbohydrate esterase and polysaccharide lyase families were up-regulated in both organisms. Accessory proteins which have been hypothesised to possibly have a role in enhancing carbohydrate deconstruction in A. niger were also uncovered in T. reesei and categories of enzymes induced were in general similar to those in A. niger. Similarly to A. niger, antisense transcripts are present in T. reesei and their expression is regulated by the growth condition. CONCLUSIONS: T. reesei uses a similar array of enzymes, for the deconstruction of a solid lignocellulosic substrate, to A. niger. This suggests a conserved strategy towards lignocellulose degradation in both saprobic fungi. This study provides a basis for further analysis and characterisation of genes shown to be highly induced in the presence of a lignocellulosic substrate. The data will help to elucidate the mechanism of solid substrate recognition and subsequent degradation by T. reesei and provide information which could prove useful for efficient production of second generation biofuels.
Assuntos
Aspergillus niger/metabolismo , Genoma Bacteriano , Lignina/metabolismo , RNA Bacteriano/genética , Transcrição GênicaRESUMO
BACKGROUND: Genome-wide analysis was performed to assess the transcriptional landscape of germinating A. niger conidia using both next generation RNA-sequencing and GeneChips. The metabolism of storage compounds during conidial germination was also examined and compared to the transcript levels from associated genes. RESULTS: The transcriptome of dormant conidia was shown to be highly differentiated from that of germinating conidia and major changes in response to environmental shift occurred within the first hour of germination. The breaking of dormancy was associated with increased transcript levels of genes involved in the biosynthesis of proteins, RNA turnover and respiratory metabolism. Increased transcript levels of genes involved in metabolism of nitrate at the onset of germination implies its use as a source of nitrogen. The transcriptome of dormant conidia contained a significant component of antisense transcripts that changed during germination. CONCLUSION: Dormant conidia contained transcripts of genes involved in fermentation, gluconeogenesis and the glyoxylate cycle. The presence of such transcripts in dormant conidia may indicate the generation of energy from non-carbohydrate substrates during starvation-induced conidiation or for maintenance purposes during dormancy. The immediate onset of metabolism of internal storage compounds after the onset of germination, and the presence of transcripts of relevant genes, suggest that conidia are primed for the onset of germination. For some genes, antisense transcription is regulated in the transition from resting conidia to fully active germinants.
Assuntos
Aspergillus niger/genética , RNA Fúngico/genética , Esporos Fúngicos/genética , Transcriptoma , Aspergillus niger/fisiologia , Metabolismo dos Carboidratos/genética , Regulação para Baixo , Proteínas Fúngicas/biossíntese , Gluconeogênese/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Antissenso/genética , Análise de Sequência de RNA , Esporos Fúngicos/fisiologia , Regulação para CimaRESUMO
Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.
RESUMO
The 2022 global mpox outbreak raises questions about how this zoonotic disease established effective human-to-human transmission and its potential for further adaptation. The 2022 outbreak virus is related to an ongoing outbreak in Nigeria originally reported in 2017, but the evolutionary path linking the two remains unclear due to a lack of genomic data between 2018, when virus exportations from Nigeria were first recorded, and 2022, when the global mpox outbreak began. Here, 18 viral genomes obtained from patients across southern Nigeria in 2019-2020 reveal multiple lineages of monkeypox virus (MPXV) co-circulated in humans for several years before 2022, with progressive accumulation of mutations consistent with APOBEC3 activity over time. We identify Nigerian A.2 lineage isolates, confirming the lineage that has been multiply exported to North America independently of the 2022 outbreak originated in Nigeria, and that it has persisted by human-to-human transmission in Nigeria for more than 2 years before its latest exportation. Finally, we identify a lineage-defining APOBEC3-style mutation in all A.2 isolates that disrupts gene A46R, encoding a viral innate immune modulator. Collectively, our data demonstrate MPXV capacity for sustained diversification within humans, including mutations that may be consistent with established mechanisms of poxvirus adaptation.