Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 70(4): e30039, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36316822

RESUMO

We describe a patient with congenital neutropenia (CN) with a homozygous germline mutation in the colony-stimulating factor 3 receptor gene (CSF3R). The patient's bone marrow shows lagging neutrophil development with subtle left shift and unresponsiveness to CSF3 in in vitro colony assays. This patient illustrates that the di-proline hinge motif in the extracellular cytokine receptor homology domain of CSF3R is critical for adequate neutrophil production, but dispensable for in vivo terminal neutrophil maturation. This report underscores that CN patients with inherited CSF3R mutations should be marked as a separate clinical entity, characterized by a failure to respond to CSF3.


Assuntos
Neutropenia , Receptores de Fator Estimulador de Colônias , Humanos , Receptores de Fator Estimulador de Colônias/genética , Mutação , Receptores de Citocinas/genética , Fator Estimulador de Colônias de Granulócitos , Neutropenia/genética
2.
Cell ; 135(6): 1006-8, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19070570

RESUMO

In this issue, Wilson et al. (2008) demonstrate that there are two functional subsets of hematopoietic stem cells that have distinctive kinetics of cell cycling. They present evidence that cells may transition between the two kinetic states, establishing one subpopulation that is ready to proliferate and another that is a deeply quiescent reserve.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Proliferação de Células , Cinética
3.
Int J Cancer ; 150(7): 1101-1112, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913161

RESUMO

For many cancers, adolescents and young adults (AYAs) have a poorer prognosis than pediatric patients. Our study evaluates survival outcomes of children (0-17 years) and AYAs (18-39 years) diagnosed with acute myeloid leukemia (AML) in the Netherlands between 1990 and 2015 (N = 2058) utilizing the population-based Netherlands Cancer Registry, which includes information on therapy and site of primary treatment. Five- and 10-year relative (disease-specific) survival were estimated for all patients, children and AYAs. Multivariable analyses were performed using generalized linear models (excess mortality) and logistic regression (early mortality). AYAs with AML had a substantially lower 5- and 10-year relative survival than children (5-year: 43% vs 58%; 10-year: 37% vs 51%). The gap in 5-year relative survival was largest (nearly 20 percent-points) in 2010 to 2015, despite survival improvements over time across all ages. The multivariable-adjusted excess risk of dying was 60% higher in AYAs (95% CI: 37%-86%). Early mortality (death within 30 days of diagnosis) declined over time, and did not differ between children and AYAs. In conclusion, AYAs diagnosed with AML in the Netherlands had a worse prognosis than pediatric patients. The survival gap seemed most pronounced in recent years, suggesting that improvements in care resulting in better outcome for children have not led to equal benefits for AYAs.


Assuntos
Leucemia Mieloide Aguda/mortalidade , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Leucemia Promielocítica Aguda/mortalidade , Modelos Lineares , Modelos Logísticos , Masculino , Países Baixos/epidemiologia , Adulto Jovem
4.
Blood ; 133(10): 1031-1038, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30670448

RESUMO

Myelodysplastic syndrome (MDS) is characterized by bone marrow failure and a strong propensity for leukemic evolution. Somatic mutations are critical early drivers of the disorder, but the factors enabling the emergence, selection, and subsequent leukemic evolution of these "leukemia-poised" clones remain incompletely understood. Emerging data point at the mesenchymal niche as a critical contributor to disease initiation and evolution. Disrupted inflammatory signaling from niche cells may facilitate the occurrence of somatic mutations, their selection, and subsequent clonal expansion. This review summarizes the current concepts about "niche-facilitated" bone marrow failure and leukemic evolution, their underlying molecular mechanisms, and clinical implications for future innovative therapeutic targeting of the niche in MDS.


Assuntos
Células-Tronco Mesenquimais/citologia , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Nicho de Células-Tronco , Progressão da Doença , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/citologia , Humanos , Inflamação , Leucemia/sangue , Leucemia/etiologia , Transdução de Sinais
5.
Haematologica ; 105(5): 1206-1215, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31371413

RESUMO

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28 Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.


Assuntos
Células-Tronco Mesenquimais , Adulto , Antígenos CD34 , Células da Medula Óssea , Proliferação de Células , Células-Tronco Hematopoéticas , Humanos , Células Estromais
6.
Blood ; 130(13): 1523-1534, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28827409

RESUMO

Endogenous DNA damage is causally associated with the functional decline and transformation of stem cells that characterize aging. DNA lesions that have escaped DNA repair can induce replication stress and genomic breaks that induce senescence and apoptosis. It is not clear how stem and proliferating cells cope with accumulating endogenous DNA lesions and how these ultimately affect the physiology of cells and tissues. Here we have addressed these questions by investigating the hematopoietic system of mice deficient for Rev1, a core factor in DNA translesion synthesis (TLS), the postreplicative bypass of damaged nucleotides. Rev1 hematopoietic stem and progenitor cells displayed compromised proliferation, and replication stress that could be rescued with an antioxidant. The additional disruption of Xpc, essential for global-genome nucleotide excision repair (ggNER) of helix-distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly, the collapse of the Rev1Xpc bone marrow was associated with progressive mitochondrial dysfunction and consequent exacerbation of oxidative stress. These data reveal that, to protect its genomic and functional integrity, the hematopoietic system critically depends on the combined activities of repair and replication of helix-distorting oxidative nucleotide lesions by ggNER and Rev1-dependent TLS, respectively. The error-prone nature of TLS may provide mechanistic understanding of the accumulation of mutations in the hematopoietic system upon aging.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Sistema Hematopoético/fisiologia , Estresse Oxidativo , Animais , Apoptose , Medula Óssea/patologia , Proliferação de Células , Senescência Celular/genética , DNA Polimerase Dirigida por DNA , Genoma , Células-Tronco Hematopoéticas/patologia , Camundongos , Nucleotidiltransferases
8.
J Immunol ; 197(7): 2686-94, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27574301

RESUMO

During embryogenesis, lymph nodes form through intimate interaction between lymphoid tissue inducer and lymphoid tissue organizer (LTo) cells. Shortly after birth in mice, specialized stromal cell subsets arise that organize microenvironments within the lymph nodes; however, their direct precursors have not yet been identified. In the bone marrow, mesenchymal stem cells are labeled with GFP in nestin-GFP mice, and we show that during all stages of development, nestin(+) cells are present within lymph nodes of these mice. At day of birth, both mesenchymal CD31(-) and endothelial CD31(+) LTo cells were GFP(+), and only the population of CD31(-) LTo cells contained mesenchymal precursors. These CD31(-)nestin(+) cells are found in the T and B cell zones or in close association with high endothelial venules in adult lymph nodes. Fate mapping of nestin(+) cells unambiguously revealed the contribution of nestin(+) precursor cells to the mesenchymal as well as the endothelial stromal populations within lymph nodes. However, postnatal tamoxifen induced targeting of nestin(+) cells in nes-creER mice showed that most endothelial cells and only a minority of the nonendothelial cells were labeled. Overall our data show that nestin(+) cells contribute to all subsets of the complex stromal populations that can be found in lymph nodes.


Assuntos
Células Endoteliais/citologia , Linfonodos/citologia , Nestina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Nestina/genética
9.
Nature ; 464(7290): 852-7, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20305640

RESUMO

Mesenchymal cells contribute to the 'stroma' of most normal and malignant tissues, with specific mesenchymal cells participating in the regulatory niches of stem cells. By examining how mesenchymal osteolineage cells modulate haematopoiesis, here we show that deletion of Dicer1 specifically in mouse osteoprogenitors, but not in mature osteoblasts, disrupts the integrity of haematopoiesis. Myelodysplasia resulted and acute myelogenous leukaemia emerged that had acquired several genetic abnormalities while having intact Dicer1. Examining gene expression altered in osteoprogenitors as a result of Dicer1 deletion showed reduced expression of Sbds, the gene mutated in Schwachman-Bodian-Diamond syndrome-a human bone marrow failure and leukaemia pre-disposition condition. Deletion of Sbds in mouse osteoprogenitors induced bone marrow dysfunction with myelodysplasia. Therefore, perturbation of specific mesenchymal subsets of stromal cells can disorder differentiation, proliferation and apoptosis of heterologous cells, and disrupt tissue homeostasis. Furthermore, primary stromal dysfunction can result in secondary neoplastic disease, supporting the concept of niche-induced oncogenesis.


Assuntos
Osso e Ossos/patologia , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Células-Tronco/patologia , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem da Célula , Feminino , Deleção de Genes , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Mesoderma/citologia , Camundongos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Ribonuclease III/metabolismo , Sarcoma Mieloide/genética , Sarcoma Mieloide/metabolismo , Sarcoma Mieloide/patologia , Nicho de Células-Tronco/metabolismo , Nicho de Células-Tronco/patologia , Células-Tronco/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
10.
Haematologica ; 100(10): 1285-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26185170

RESUMO

Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Neutropenia/genética , Proteínas/genética , Animais , Apoptose/genética , Doenças da Medula Óssea/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclo Celular/genética , Modelos Animais de Doenças , Insuficiência Pancreática Exócrina/genética , Deleção de Genes , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Lipomatose/genética , Camundongos , Camundongos Knockout , Síndrome de Shwachman-Diamond , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
11.
Nat Rev Immunol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491073

RESUMO

Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.

13.
Hemasphere ; 7(2): e823, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36741354

RESUMO

Mesenchymal stem cells (MSCs) play pivotal roles in tissue (re)generation. In the murine bone marrow, they are thought to reside within the Sca-1+ CD51+ bone marrow stromal cell population. Here, using scRNAseq, we aimed to delineate the cellularheterogeneity of this MSC-enriched population throughout development. At the fetal stage, the MSC population is relatively homogeneous with subsets predicted to contain stem/progenitor cells, based on transcriptional modeling and marker expression. These subsets decline in relative size throughout life, with postnatal emergence of specialized clusters, including hematopoietic stem/progenitor cell (HSPC) niches. In fetal development, these stromal HSPC niches are lacking, but subsets of endothelial cells express HSPC factors, suggesting that they may provide initial niches for emerging hematopoiesis. This cellular taxonomy of the MSC population upon development is anticipated to provide a resource aiding the prospective identification of cellular subsets and molecular mechanisms driving bone marrow (re)generation.

14.
Hemasphere ; 7(2): e824, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36741355

RESUMO

RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.

15.
Blood Cancer Discov ; 4(5): 394-417, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470778

RESUMO

Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment. SIGNIFICANCE: Tumor-promoting inflammation is considered an enabling characteristic of tumorigenesis, but mechanisms remain incompletely understood. By deciphering the predicted signaling between tissue-resident stem cells and their neoplastic counterparts with their environment, we identify inflammatory remodeling of stromal niches as a determinant of normal tissue repression and clinical outcomes in human AML. See related commentary by Lisi-Vega and Méndez-Ferrer, p. 349. This article is featured in Selected Articles from This Issue, p. 337.


Assuntos
Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Medula Óssea , Leucemia Mieloide Aguda/genética , Hematopoese/genética , Células Estromais
16.
Blood Adv ; 6(11): 3195-3200, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35026845

RESUMO

Familial platelet disorder with associated myeloid malignancies (RUNX1-familial platelet disorder [RUNX1-FPD]) is caused by heterozygous pathogenic germline variants of RUNX1. In the present study, we evaluate the applicability of transactivation assays to investigate RUNX1 variants in different regions of the protein. We studied 11 variants to independently validate transactivation assays supporting variant classification following the ClinGen Myeloid Malignancies Variant Curation Expert Panel guidelines. Variant classification is key for the translation of genetic findings. We showed that new assays need to be developed to assess C-terminal RUNX1 variants. Two variants of uncertain significance (VUS) were reclassified to likely pathogenic. Additionally, our analyses supported the (likely) pathogenic classification of 2 other variants. We demonstrated functionality of 4 VUS, but reclassification to (likely) benign was challenging and suggested the need for reevaluating current classification guidelines. Finally, clinical utility of our assays was illustrated in the context of 7 families. Our data confirmed RUNX1-FPD suspicion in 3 families with RUNX1-FPD-specific family history, whereas for 3 variants identified in RUNX1-FPD-nonspecific families, no functional defect was detected. Applying functional assays to support RUNX1 variant classification can be essential for adequate care of index patients and their relatives at risk. It facilitates translation of genetic data into personalized medicine.


Assuntos
Transtornos Plaquetários , Leucemia Mieloide Aguda , Transtornos Plaquetários/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Germinativas , Humanos , Leucemia Mieloide Aguda/genética , Ativação Transcricional
17.
Nat Commun ; 13(1): 7657, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496394

RESUMO

Innate and adaptive immune cells participate in the homeostatic regulation of hematopoietic stem cells (HSCs). Here, we interrogate the contribution of myeloid cells, the most abundant cell type in the mammalian bone marrow, in a clinically relevant mouse model of neutropenia. Long-term genetic depletion of neutrophils and eosinophils results in activation of multipotent progenitors but preservation of HSCs. Depletion of myeloid cells abrogates HSC expansion, loss of serial repopulation and lymphoid reconstitution capacity and remodeling of HSC niches, features previously associated with hematopoietic aging. This is associated with mitigation of interferon signaling in both HSCs and their niches via reduction of NK cell number and activation. These data implicate myeloid cells in the functional decline of hematopoiesis, associated with activation of interferon signaling via a putative neutrophil-NK cell axis. Innate immunity may thus come at the cost of system deterioration through enhanced chronic inflammatory signaling to stem cells and their niches.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Células Mieloides , Medula Óssea/fisiologia , Interferons/metabolismo , Diferenciação Celular , Mamíferos
18.
Haematologica ; 96(7): 1041-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21459792

RESUMO

The field of hematopoietic oncology has traditionally focused on the study of hematopoietic cell autonomous genetic events in an effort to understand malignant transformation and develop therapeutics. Although highly rewarding in both aspects, this cell autonomous approach has failed to fully satisfy our need to understand tumor cell behavior and related clinical observations. In recent years, it has been increasingly recognized that the tumor microenvironment plays a pivotal role in cancer initiation and progression. This review will discuss recent experimental evidence in support of this view derived from investigations in both epithelial and hematopoietic systems. Based on this, conceptual views and therapeutic implications will be provided on the emerging role of the bone marrow microenvironment in leukemogenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Sistema Hematopoético/metabolismo , Nicho de Células-Tronco/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Sistema Hematopoético/patologia , Humanos , Leucemia/metabolismo , Leucemia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco/patologia , Microambiente Tumoral/genética
19.
Curr Opin Hematol ; 15(4): 301-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18536566

RESUMO

PURPOSE OF REVIEW: The hematopoietic stem cell niche is critical for the maintenance and proliferation of hematopoietic stem cells and, as such, is not only essential for steady-state hematopoiesis but may also be relevant to hematologic disease. The present review discusses recent advances in the understanding of interactions within the niche, its potential role in disease pathogenesis and models of its use as a therapeutic target. RECENT FINDINGS: Recent studies have continued to provide important insights into the cellular and molecular components constituting the hematopoietic stem cell niche. Niche interactions have been shown to be involved in the pathogenesis of hematologic disease in animal models. Molecular components of the niche involved in these interactions have been identified, and proof of principle that their manipulation can result in therapeutic benefit is available. Finally, pharmacologic manipulation of the niche is now being tested in stem cell-based therapies. SUMMARY: Increasing insights into the molecular architecture of the hematopoietic stem cell niche have led to the exploitation of the niche as a target in stem cell therapies and offer the prospect of niche-targeted therapy as a new treatment modality in hematologic disease.


Assuntos
Comunicação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Transplante de Células-Tronco Hematopoéticas , Humanos
20.
Cell Stem Cell ; 25(3): 301-303, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491392

RESUMO

The drivers of aging in the hematopoietic system remain incompletely understood. In this issue of Cell Stem Cell, Ho et al. (2019) report that functional switching of ß-adrenergic nerve signaling underlies remodeling of stem cell niches, driving age-associated alterations in hematopoiesis.


Assuntos
Medula Óssea , Nicho de Células-Tronco , Hematopoese , Células-Tronco Hematopoéticas , Células Mieloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA