Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179666

RESUMO

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Assuntos
Cromatina , Placenta , Animais , Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Evolução Molecular , Feminino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 74(6): 1110-1122, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226276

RESUMO

During embryogenesis, precise gene transcription in space and time requires that distal enhancers and promoters communicate by physical proximity within gene regulatory landscapes. To achieve this, regulatory landscapes fold in nuclear space, creating complex 3D structures that influence enhancer-promoter communication and gene expression and that, when disrupted, can cause disease. Here, we provide an overview of how enhancers and promoters construct regulatory landscapes and how multiple scales of 3D chromatin structure sculpt their communication. We focus on emerging views of what enhancer-promoter contacts and chromatin domains physically represent and how two antagonistic fundamental forces-loop extrusion and homotypic attraction-likely form them. We also examine how these same forces spatially separate regulatory landscapes by functional state, thereby creating higher-order compartments that reconfigure during development to enable proper enhancer-promoter communication.


Assuntos
Cromatina/ultraestrutura , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Regiões Promotoras Genéticas , Transcrição Gênica , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromatina/metabolismo , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Humanos , Conformação Molecular
3.
Proc Natl Acad Sci U S A ; 121(32): e2322360121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074288

RESUMO

Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.


Assuntos
Galinhas , Mecanismo Genético de Compensação de Dose , Ornitorrinco , Cromossomos Sexuais , Animais , Galinhas/genética , Cromossomos Sexuais/genética , Masculino , Feminino , Ornitorrinco/genética , Transcrição Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Oncotarget ; 6(25): 20742-3, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26369700

RESUMO

Comment on: Yien Y, et al. TMEM14C is required for erythroid mitochondrial heme metabolism. J. Clin. Invest. 2014; 124:4294-4304.


Assuntos
Células Eritroides/metabolismo , Mitocôndrias/metabolismo , Protoporfirinas/fisiologia , Animais , Transporte Biológico , Heme/química , Homeostase , Humanos , Camundongos , Análise de Sequência de RNA , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA