RESUMO
The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H-ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc-linker@HFn) which is subjected to glutathione-induced cyclization in tumor cell cytoplasm. The prolonged imaging of luciferase+ tumor models, demonstrated by an in vitro and an in vivo approach, associated with the prolonged release of luciferin into cancer cells by disulfide bridge reduction, clearly indicates the high efficiency of Luc-linker@HFn for drug delivery to the tumor tissues.
Assuntos
Apoferritinas , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias , Apoferritinas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológicoRESUMO
The use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. The conjugation of mAbs to nanoparticles has been broadly exploited to improve the targeting efficiency of drug nanocarriers taking advantage of high binding efficacy and target selectivity of antibodies for specific cell receptors. However, the therapeutic implications of nanoconjugation have been poorly considered. In this study, half-chain fragments of the anti-EGFR mAb cetuximab were conjugated to colloidal nanoparticles originating stable nanoconjugates that were investigated as surrogates of therapeutic mAbs in triple negative breast cancer (TNBC). Three TNBC cell lines were selected according to EGFR expression, which regulates activation of MAPK/ERK and PI3K/Akt pathways, and to distinctive molecular profiling including KRAS, PTEN, and BRCA1 mutations normally associated with diverse sensitivity to treatment with cetuximab. The molecular mechanisms of action of nanoconjugated half-chain mAb, including cell targeting, interference with downstream signaling pathways, proliferation, cell cycle, and apoptosis, along with triggering of ADCC response, were investigated in detail in sensitive and resistant TNBC cells. We found that half-chain mAb nanoconjugation was able to enhance the therapeutic efficacy and improve the target selectivity against sensitive, but unexpectedly also resistant, TNBC cells. Viability assays and signaling transduction modulation suggested a role of BRCA1 mutation in TNBC resistance to cetuximab alone, whereas its effect could be circumvented using half-chain cetuximab nanoconjugates, suggesting that nanoconjugation not only improved the antibody activity but also exerted different mechanisms of action. Our results provide robust evidence of the potential of half-chain antibody nanoconjugates in the treatment of TNBC, which could offer a new paradigm for therapeutic antibody administration, potentially allowing improved curative efficiency and reduced minimal effective dosages in both sensitive and resistant tumors.
Assuntos
Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Cetuximab/química , Cetuximab/farmacologia , Nanoconjugados/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos Imunológicos/farmacocinética , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacocinética , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
Triple negative breast cancer (TNBC) is a highly aggressive, invasive, and metastatic tumor. Although it is reported to be sensitive to cytotoxic chemotherapeutics, frequent relapse and chemoresistance often result in treatment failure. In this study, we developed a biomimetic nanodrug consisting of a self-assembling variant (HFn) of human apoferritin loaded with curcumin. HFn nanocage improved the solubility, chemical stability, and bioavailability of curcumin, allowing us to reliably carry out several experiments in the attempt to establish the potential of this molecule as a therapeutic agent and elucidate the mechanism of action in TNBC. HFn biopolymer was designed to bind selectively to the TfR1 receptor overexpressed in TNBC cells. HFn-curcumin (CFn) proved to be more effective in viability assays compared to the drug alone using MDA-MB-468 and MDA-MB-231 cell lines, representative of basal and claudin-low TNBC subtypes, respectively. Cellular uptake of CFn was demonstrated by flow cytometry and label-free confocal Raman imaging. CFn could act as a chemosensitizer enhancing the cytotoxic effect of doxorubicin by interfering with the activity of multidrug resistance transporters. In addition, CFn exhibited different cell cycle effects on these two TNBC cell lines, blocking MDA-MB-231 in G0/G1 phase, whereas MDA-MB-468 accumulated in G2/M phase. CFn was able to inhibit the Akt phosphorylation, suggesting that the effect on the proliferation and cell cycle involved the alteration of PI3K/Akt pathway.
Assuntos
Antineoplásicos/farmacologia , Apoferritinas/farmacologia , Curcumina/farmacologia , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/metabolismo , Transporte Biológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Calcineurin (CN) inhibitors currently used to avoid transplant rejection block the activation of adaptive immune responses but also prevent the development of tolerance toward the graft, by directly inhibiting T cells. CN, through the transcription factors of the NFAT family, plays an important role also in the differentiation dendritic cells (DCs), the main cells responsible for the activation of T lymphocytes. Therefore, we hypothesized that the inhibition of CN only in DCs and not in T cells could be sufficient to prevent T cell responses, while allowing for the development of tolerance. Here, we show that inhibition of CN/NFAT pathway in innate myeloid cells, using a new nanoconjugate capable of selectively targeting phagocytes in vivo, protects against graft rejection and induces a longer graft acceptance compared to common CN inhibitors. We propose a new generation of nanoparticles-based selective immune suppressive agents for a better control of transplant acceptance.
RESUMO
Cancer-associated fibroblasts (CAFs) are key actors in the context of the tumor microenvironment. Despite being reduced in number as compared to tumor cells, CAFs regulate tumor progression and provide protection from antitumor immunity. Emerging anticancer strategies aim to remodel the tumor microenvironment through the ablation of pro-tumorigenic CAFs or reprogramming of CAFs functions and their activation status. A promising approach is the development of nanosized delivery agents able to target CAFs, thus allowing the specific delivery of drugs and active molecules. In this context, a cellular model of CAFs may provide a useful tool for in vitro screening and preliminary investigation of such nanoformulations. This study describes the isolation and culture of primary CAFs from the syngeneic 4T1 murine model of triple-negative breast cancer. Magnetic beads were used in a 2-step separation process to extract CAFs from dissociated tumors. Immunophenotyping control was performed using flow cytometry after each passage to verify the process yield. Isolated CAFs can be employed to study the targeting capability of different nanoformulations designed to tackle the tumor microenvironment. Fluorescently labeled H-ferritin nanocages were used as candidate nanoparticles to set up the method. Nanoparticles, either bare or conjugated with a targeting ligand, were analyzed for their binding to CAFs. The results suggest that ex vivo extraction of breast CAFs may be a useful system to test and validate nanoparticles for the specific targeting of tumorigenic CAFs.
Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Nanopartículas , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Nanopartículas/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente TumoralRESUMO
The transferrin receptor 1 (TFR-1) has been found overexpressed in a broad range of solid tumors in humans and is, therefore, attracting great interest in clinical oncology for innovative targeted therapies, including nanomedicine. TFR-1 is recognized by H-Ferritin (HFn) and has been exploited to allow selective binding and drug internalization, applying an HFn nanocage loaded with doxorubicin (HFn(DOX)). In veterinary medicine, the role of TFR-1 in animal cancers remains poorly explored, and no attempts to use TFR-1 as a target for drug delivery have been conducted so far. In this study, we determined the TFR-1 expression both in feline mammary carcinomas during tumor progression, as compared to healthy tissue, and, in vitro, in a feline metastatic mammary cancer cell line. The efficacy of HFn(DOX) was compared to treatment with conventional doxorubicin in feline mammary cancer cells. Our results highlighted an increased TFR-1 expression associated with tumor metastatic progression, indicating a more aggressive behavior. Furthermore, it was demonstrated that the use of HFn(DOX) resulted in less proliferation of cells and increased apoptosis when compared to the drug alone. The results of this preliminary study suggest that the use of engineered bionanocages also offers unprecedented opportunities for selective targeted chemotherapy of solid tumors in veterinary medicine.
RESUMO
Cancer-associated fibroblasts (CAFs) are key actors in regulating cancer progression. They promote tumor growth, metastasis formation, and induce drug resistance. For these reasons, they are emerging as potential therapeutic targets. Here, with the aim of developing CAF-targeted drug delivery agents, we functionalized H-ferritin (HFn) nanocages with fibroblast activation protein (FAP) antibody fragments. Functionalized nanocages (HFn-FAP) have significantly higher binding with FAP+ CAFs than with FAP- cancer cells. We loaded HFn-FAP with navitoclax (Nav), an experimental Bcl-2 inhibitor pro-apoptotic drug, whose clinical development is limited by its strong hydrophobicity and toxicity. We showed that Nav is efficiently loaded into HFn (HNav), maintaining its mechanism of action. Incubating Nav-loaded functionalized nanocages (HNav-FAP) with FAP+ cells, we found significantly higher cytotoxicity as compared to non-functionalized HNav. This was correlated with a significantly higher drug release only in FAP+ cells, confirming the specific targeting ability of functionalized HFn. Finally, we showed that HFn-FAP is able to reach the tumor and to target CAFs in a mouse syngeneic model of triple negative breast cancer after intravenous administration. Our data show that HNav-FAP could be a promising tool to enhance specific drug delivery into CAFs, thus opening new therapeutic possibilities focused on tumor microenvironment.
Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Apoferritinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal/métodos , Nanopartículas/metabolismo , Sulfonamidas/uso terapêutico , Engenharia Tecidual/métodos , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Feminino , Humanos , Camundongos , Sulfonamidas/farmacologiaRESUMO
Brain cancers are a group of neoplasms that can be either primary, such as glioblastoma multiforme (GBM), or metastatic, such as the HER2+ breast cancer brain metastasis. The brain represents a sanctuary for cancer cells thanks to the presence of the blood brain barrier (BBB) that controls trafficking of molecules, protecting the brain from toxic substances including drugs. Considering that GBM and HER2+ breast cancer brain metastases are characterized by EGFR and HER2 over-expression respectively, CTX- and TZ-based treatment could be effective. Several studies show that these monoclonal antibodies (mAbs) exert both a cytostatic activity interfering with the transduction pathways of EGFR family and a cytotoxic activity mainly through the immune system activation via the antibody dependent cell-mediated cytotoxicity (ADCC). Since the major limitation to therapeutic mAbs application is the presence of the BBB, here we use a recombinant form of human apoferritin (HFn) as a nanovector to promote the delivery of mAbs to the brain for the activation of the ADCC response. Using a transwell model of the BBB we proved the crossing ability of HFn-mAb. Cellular uptake of HFn-mAb by human cerebral microvascular endothelial cells (hCMEC/D3) was demonstrated by confocal microscopy. Moreover, after crossing the endothelial monolayer, HFn-conjugated mAbs retain their biological activity against targets, as assessed by MTS and ADCC assays. Our data support the use of HFn as efficient carrier to enhance the BBB crossing of mAbs, without affecting their antitumoral activity.
Assuntos
Neoplasias Encefálicas , Nanopartículas , Apoferritinas , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Células Endoteliais , HumanosRESUMO
Nanoparticle assisted drug delivery to the cytoplasm is limited by sequestration of nanoparticles in endosomes. Endosomal escape through polymer-induced membrane destabilization is one of a few well characterized mechanisms to overcome it. Aiming to utilize this method in vivo, it is necessary to understand how modulating the structural and chemical features of the polymer and the presence of proteins in biological fluids can affect this activity. Here, as a model for the endosomal membrane, we use the membrane of red blood cells to evaluate the membrane destabilization ability of a model amphiphilic polymer in the presence of blood plasma using a hemolysis assay. This allows determination of red blood cells membrane permeabilization through the quantification of hemoglobin leakage. Our results showed a strong inhibitory effect of plasma, and that hemolytic activity can be improved by chemical modification of the polymeric micelle, reducing its interaction with plasma proteins. Finally, a second mechanism of pH-induced direct diffusion is proposed and tested using an oil/water partitioning model. These results offer a body of knowledge to improve delivery of drugs across biological membranes using carefully designed polymeric nanocarriers.
Assuntos
Nanopartículas , Polímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Endossomos , MicelasRESUMO
Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.
RESUMO
The current treatments for chronic inflammatory diseases cause severe side effects due to nonspecific drug accumulation. Nanotechnology opens the way to new therapeutic strategies that exploit the ability of immune cells, and especially of phagocytes, to internalize nanoparticles. The cellular uptake of nanoparticles requires specific interactions and is affected by the chemical and physical properties of the carriers. Therefore, optimizing these properties is crucial for designing nanodrugs for immunotherapy. In perspective, we discuss the nanoparticle-based approaches that have been proposed to induce tolerance in autoimmune disorders and lessen the symptoms of inflammatory diseases.
Assuntos
Doenças Autoimunes/terapia , Inflamação/terapia , Nanopartículas/uso terapêutico , Animais , Humanos , Tolerância Imunológica , Nanomedicina/métodos , Nanotecnologia/métodos , FagocitoseRESUMO
Nanoparticles are normally classified as "hard", mainly consisting of metal or metal oxide cores, or "soft", including polymer-based, liposomes and biomimetic nanoparticles. Soft nanoparticles have been studied in depth for drug formulation and therapeutic delivery applications, albeit hard nanoparticles may offer easier synthesis, smaller size and more effective tumor penetration. Among them, silica nanoparticles maintain excellent biocompatibility and biodegradability and can be finely adjusted in size and shape, easily produced in a large scale and functionalized or loaded with active molecules. To help filling the gap of a poor clinical translation of hard nanoparticles, we have designed and developed three different nonporous silica nanocarriers loading the chemotherapeutic doxorubicin within the core matrix, on the surface or both inside and outside, respectively. A comparative study was performed on drug loading and drug release, silica matrix degradation and nanodrug cytotoxic activity, highlighting unexpected correlation between the strategy adopted for drug incorporation and nanoparticle behavior in a physiological environment. This study offers a new insight on the impact of the choice of the prodrug nanoparticles on the kinetics and efficacy of drug delivery, which may encourage the scientific community in developing a new generation of drug delivery systems based on hard nanocarriers.