RESUMO
The ß-diketone scaffold is a commonly used synthetic intermediate, and is a functional group found in natural products such as curcuminoids. This core structure can also act as a chelating ligand for a variety of metals. In order to assess the potential of this scaffold for medicinal inorganic chemistry, seven different κ2-O,O'-chelating ligands were used to construct Ru(II) complexes with polypyridyl co-ligands, and their biological activity was evaluated. The complexes demonstrated promising structure-dependent cytotoxicity. Three complexes maintained high activity in a tumor spheroid model, and all complexes demonstrated low in vivo toxicity in a zebrafish model. From this series, the best compound exhibited a ~ 30-fold window between cytotoxicity in a 3-D tumor spheroid model and potential in vivo toxicity. These results suggest that κ2-O,O'-ligands can be incorporated into Ru(II)-polypyridyl complexes to create favorable candidates for future drug development.
RESUMO
Ruthenium(II) complexes developed for photodynamic therapy (PDT) are almost exclusively tris-bidentate systems with C2 or D3 symmetry. This is due to the fact that this structural framework commonly produces long-lived excited states, which, in turn, allow for the generation of large amounts of singlet oxygen (1O2) and other reactive oxygen species. Complexes containing tridentate ligands would be advantageous for biological applications as they are generally achiral (D2d or C2v symmetry), which eliminates the possibility of multiple isomers which could exhibit potentially different interactions with chiral biological entities. However, Ru(II) complexes containing tridentate ligands are rarely studied as candidates for photobiological applications, such as PDT, since they almost exclusively exhibit low quantum yields and very short excited-state lifetimes and, thus, are not capable of generating sufficient 1O2 or engaging in electron transfer reactions. Here, we report a proof-of-concept approach to make bis-tridentate Ru(II) complexes useful for PDT applications by altering their photophysical properties through the inclusion of N-heterocyclic carbene (NHC) ligands. Three NHC and two terpyridine ligands were studied to evaluate the effects of structural and photophysical modulations of bis-substituted Ru(II) complexes. The NHC complexes were found to have superior excited-state lifetimes, 1O2 production, and photocytotoxicity. To the best of our knowledge, these complexes are the most potent light-activated bis-tridentate complexes reported.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , DNA/metabolismo , Quebras de DNA de Cadeia Simples/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Luz , Estudo de Prova de Conceito , Rutênio/química , Oxigênio Singlete/metabolismoRESUMO
We report a first-in-class responsive, pentafluorosulfanyl (-SF5)-tagged 19F MRI agent capable of reversibly detecting reducing environments via an FeII/III redox couple. In the FeIII form, the agent displays no 19F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to FeII with one equivalent of cysteine, the agent displays a robust 19F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The -SF5 tag in this agent enables 'multicolor imaging' in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19F MR signal of this -SF5 agent and a hypoxia-responsive agent containing a -CF3 group.
RESUMO
Photoreactive Ru(II) complexes capable of ejecting ligands have been used extensively for photocaging applications and for the creation of "photocisplatin" reagents. The incorporation of distortion into the structure of the coordination complex lowers the energy of dissociative excited states, increasing the yield of the photosubstitution reaction. While steric clash between ligands induced by adding substituents at the coordinating face of the ligand has been extensively utilized, a lesser known, more subtle approach is to distort the coordination sphere by altering the chelate ring size. Here a systematic study was performed to alter metal-ligand bond lengths, angles, and to cause intraligand distortion by introducing a "linker" atom or group between two pyridine rings. The synthesis, photochemistry, and photobiology of five Ru(II) complexes containing CH2, NH, O, and S-linked dipyridine ligands was investigated. All systems where stable in the dark, and three of the five were photochemically active in buffer. While a clear periodic trend was not observed, this study lays the foundation for the creation of photoactive systems utilizing an alternative type of distortion to facilitate photosubstitution reactions.
Assuntos
Rutênio , Rutênio/química , Ligantes , Fotobiologia , FotoquímicaRESUMO
Four structurally distinct classes of polypyridyl ruthenium complexes containing avobenzone exhibited low micromolar and submicromolar potencies in cancer cells, and were up to 273-fold more active than the parent ligand. Visible light irradiation enhanced the cytotoxicity of some complexes, making them promising candidates for combined chemo-photodynamic therapy.