Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Subcell Biochem ; 59: 389-412, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22374098

RESUMO

Ins(1,4,5)P(3) is a classical intracellular messenger: stimulus-dependent changes in its levels elicits biological effects through its release of intracellular Ca(2+) stores. The Ins(1,4,5)P(3) response is "switched off" by its metabolism to a range of additional inositol phosphates. These metabolites have themselves come to be collectively described as a signaling "family". The validity of that latter definition is critically examined in this review. That is, we assess the strength of the hypothesis that Ins(1,4,5)P(3) metabolites are themselves "classical" signals. Put another way, what is the evidence that the biological function of a particular inositol phosphate depends upon stimulus dependent changes in its levels? In this assessment, examples of an inositol phosphate acting as a cofactor (i.e. its function is not stimulus-dependent) do not satisfy our signaling criteria. We conclude that Ins(3,4,5,6)P(4) is, to date, the only Ins(1,4,5)P(3) metabolite that has been validated to act as a second messenger.


Assuntos
Células Eucarióticas/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Sistemas do Segundo Mensageiro , Animais , Cálcio/metabolismo , Células Eucarióticas/citologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
2.
Sensors (Basel) ; 10(9): 8526-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163670

RESUMO

Phytosensors are plants that are genetically engineered for sensing and reporting the presence of a specific contaminant, including agriculturally important biological agents. Phytosensors are constructed by transforming plants to contain specific biotic- or abiotic-inducible promoters fused to a reporter gene. When such transgenic plants encounter the target biotic or abiotic agent, the specific inducible promoter is triggered and subsequently drives the expression of the reporter gene, which produces a signal for detection. However, several systems lack robustness, rapid induction and promoter strength. Here, we tested the FLP/FRT recombination system in a construct containing a two gene cassette organization and examined its potential in transgenic Arabidopsis and tobacco plants using a ß-glucuronidase (GUS) reporter. In this model system, a heat-shock inducible promoter was employed to control the expression of the FLP recombinase gene. Upon heat induction and subsequent active FLP-mediated excision event, the GUS gene was placed in close proximity to the 35S promoter resulting in an active GUS reporter expression. Our results demonstrate that the two gene cassette scheme of inducible FLP/FRT recombination system is functional in tobacco and Arabidopsis, providing additional insights into its possible application in phytosensing such as creating strong readout capabilities.


Assuntos
Arabidopsis/genética , DNA Nucleotidiltransferases/genética , Genes Reporter/genética , Plantas Geneticamente Modificadas/genética , Saccharomyces cerevisiae/genética , Arabidopsis/metabolismo , Glucuronidase/genética , Modelos Genéticos , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Recombinação Genética , Saccharomyces cerevisiae/enzimologia , Nicotiana/genética , Nicotiana/metabolismo
3.
Biochem J ; 408(3): 335-45, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17705785

RESUMO

InsP6 is an intracellular signal with several proposed functions that is synthesized by IP5K [Ins(1,3,4,5,6)P5 2-kinase]. In the present study, we overexpressed EGFP (enhanced green fluorescent protein)-IP5K fusion proteins in NRK (normal rat kidney), COS7 and H1299 cells. The results indicate that there is spatial microheterogeneity in the intracellular localization of IP5K that could also be confirmed for the endogenous enzyme. This may facilitate changes in InsP6 levels at its sites of action. For example, overexpressed IP5K showed a structured organization within the nucleus. The kinase was preferentially localized in euchromatin and nucleoli, and co-localized with mRNA. In the cytoplasm, the overexpressed IP5K showed locally high concentrations in discrete foci. The latter were attributed to stress granules by using mRNA, PABP [poly(A)-binding protein] and TIAR (TIA-1-related protein) as markers. The incidence of stress granules, in which IP5K remained highly concentrated, was further increased by puromycin treatment. Using FRAP (fluorescence recovery after photobleaching) we established that IP5K was actively transported into the nucleus. By site-directed mutagenesis we identified a nuclear import signal and a peptide segment mediating the nuclear export of IP5K.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Primers do DNA , Humanos , Hibridização in Situ Fluorescente , Cinética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/genética , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA