Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(3): 353-358, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228725

RESUMO

Recent progress has shown that using wavelengths between 1,000 and 2,000 nm, referred to as the shortwave-infrared or near-infrared (NIR)-II range, can enable high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. However, few bioconjugatable probes of the type that have proven invaluable for multiplexed imaging in the visible and NIR range are available for imaging these wavelengths. Using rational design, we have generated persulfonated indocyanine dyes with absorbance maxima at 872 and 1,072 nm through catechol-ring and aryl-ring fusion, respectively, onto the nonamethine scaffold. Multiplexed two-color and three-color in vivo imaging using monoclonal antibody and dextran conjugates in several tumor models illustrate the benefits of concurrent labeling of the tumor and healthy surrounding tissue and lymphatics. These efforts are enabled by complementary advances in a custom-built NIR/shortwave-infrared imaging setup and software package for multicolor real-time imaging.


Assuntos
Corantes Fluorescentes , Neoplasias , Anticorpos Monoclonais , Humanos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Nat Methods ; 18(3): 253-257, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33633409

RESUMO

Illumination of fluorophores can induce a loss of the ability to fluoresce, known as photobleaching. Interestingly, some fluorophores photoconvert to a blue-shifted fluorescent molecule as an intermediate on the photobleaching pathway, which can complicate multicolor fluorescence imaging, especially under the intense laser irradiation used in super-resolution fluorescence imaging. Here, we discuss the mechanisms of photoblueing of fluorophores and its impact on fluorescence imaging, and show how it can be prevented.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Fotodegradação , Artefatos , Fluorescência , Corantes Fluorescentes/química
3.
J Nat Prod ; 87(2): 415-423, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38291771

RESUMO

Pyrrole-containing natural products form a large group of structurally diverse compounds that occur in both terrestrial and marine organisms. In the present study the formation of trideuteromethylated artifacts of pyrrole-containing natural products was investigated, focusing on the discorhabdins. Three deuterated discorhabdins, 1, 3, and 5, were identified to be isolation procedure artifacts caused by the presence of DMSO-d6 during NMR sample preparation and handling. Three additional semisynthetic derivatives, 7-9, were made during the investigation of the mechanism of formation, which was shown to be driven by trideuteromethyl radicals in the presence of water, methanol, TFA, and traces of iron in the deuterated solvent. Generation of trideuteromethylated artifacts was also confirmed for other classes of pyrrole-containing metabolites, namely, makaluvamines, tambjamines, and dibromotryptamines, which had also been dissolved in DMSO-d6 during the structure elucidation process. Semisynthetic discorhabdins were assessed for antiproliferative activity against a panel of human tumor cell lines, and 14-trideuteromethyldiscorhabdin L (3) averaged low micromolar potency.


Assuntos
Produtos Biológicos , Dimetil Sulfóxido , Humanos , Dimetil Sulfóxido/química , Pirróis/química , Produtos Biológicos/farmacologia , Artefatos , Solventes/química
4.
J Am Chem Soc ; 145(36): 19571-19577, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37658476

RESUMO

Preventing fluorophore photobleaching and unwanted blinking is crucial for single-molecule fluorescence (SMF) studies. Reductants achieve photoprotection via quenching excited triplet states, yet either require counteragents or, for popular alkyl-thiols, are limited to cyanine dye Cy3 protection. Here, we provide mechanistic and imaging results showing that the naturally occurring amino acid ergothioneine and its analogue dramatically enhance photostability for Cy3, Cy5, and their conformationally restrained congeners, providing a biocompatible universal solution for demanding fluorescence imaging.


Assuntos
Ergotioneína , Quinolinas , Aminoácidos , Corantes Fluorescentes , Imidazóis , Ionóforos
5.
J Am Chem Soc ; 145(6): 3335-3345, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745536

RESUMO

Multicomponent bioluminescence imaging in vivo requires an expanded collection of tissue-penetrant probes. Toward this end, we generated a new class of near-infrared (NIR) emitting coumarin luciferin analogues (CouLuc-3s). The scaffolds were easily accessed from commercially available dyes. Complementary mutant luciferases for the CouLuc-3 analogues were also identified. The brightest probes enabled sensitive imaging in vivo. The CouLuc-3 scaffolds are also orthogonal to popular bioluminescent reporters and can be used for multicomponent imaging applications. Collectively, this work showcases a new set of bioluminescent tools that can be readily implemented for multiplexed imaging in a variety of biological settings.


Assuntos
Luciferina de Vaga-Lumes , Luciferinas , Medições Luminescentes/métodos , Luciferases , Cumarínicos
6.
J Org Chem ; 88(24): 17430-17437, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38051763

RESUMO

The photoconversion of heptamethine to pentamethine cyanines and of pentamethine to trimethine cyanines was recently reported. Here, we report mechanistic studies and initial experimental evidence for a previously unexplored 4-carbon truncation reaction that converts the simplest heptamethine cyanine to the corresponding trimethine cyanine. We propose a DFT-supported model describing a singlet oxygen (1O2)-mediated formation of an allene hydroperoxide intermediate and subsequent 4-carbon loss through a retro-Diels-Alder process. Fluorescence and mass spectrometry measurements provide evidence of this direct conversion process. This 4-carbon truncation reaction adds to a growing body of cyanine reactivity and may provide an optical tool leading to a substantial blue-shift (Δλem) of ∼200 nm.

7.
J Org Chem ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096133

RESUMO

Bioluminescence imaging enables the sensitive tracking of cell populations and the visualization of biological processes in living systems. Bioluminescent luciferase/luciferin pairs with far-red and near-infrared emission benefit from the reduced competitive absorption by blood and tissue while also facilitating multiplexing strategies. Luciferins with extended π-systems, such as AkaLumine and recently reported CouLuc-1 and -3, can be used for bioluminescence imaging in this long wavelength regime. Existing synthetic routes to AkaLumine and similar π-extended compounds require a multistep sequence to install the thiazoline heterocycle. Here we detail the development of a two-step strategy for accessing these molecules via a Horner-Wadsworth-Emmons reaction and cysteine condensation sequence from readily available aldehyde starting materials. We detail an improved synthesis of AkaLumine, as well as the corresponding two-carbon homologues, Tri- and Tetra-AkaLumine. We then extended this approach to prepare coumarin- and naphthalene-derived luciferins. These putative luciferins were tested against a panel of luciferases to identify capable emitters. Of these, an easily prepared naphthalene derivative exhibits photon emission on par with that of the broadly used Akaluc/AkaLumine pair with similar emission maxima. Overall, this chemistry provides efficient access to several bioluminescent probes for a variety of imaging applications.

8.
Lasers Surg Med ; 55(5): 480-489, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37003294

RESUMO

OBJECTIVES: Postoperative bile leakage is a common complication of hepatobiliary surgery and frequently requires procedural intervention. Bile-label 760 (BL-760), a novel near-infrared dye, has emerged as a promising tool for identifying biliary structures and leakage, owing to its rapid excretion and strong bile specificity. This study aimed to assess the intraoperative detection of biliary leakage using intravenously administered BL-760 compared with intravenous (IV) and intraductal (ID) indocyanine green (ICG). MATERIALS AND METHODS: Laparotomy and segmental hepatectomy with vascular control were performed on two 25-30 kg pigs. ID ICG, IV ICG, and IV BL-760 were administered separately, followed by an examination of the liver parenchyma, cut liver edge, and extrahepatic bile ducts for areas of leakage. The duration of intra- and extrahepatic fluorescence detection was assessed, and the target-to-background (TBR) of the bile ducts to the liver parenchyma was quantitatively measured. RESULTS: In Animal 1, after intraoperative BL-760 injection, three areas of leaking bile were identified within 5 min on the cut liver edge with a TBR of 2.5-3.8 that was not apparent to the naked eye. In contrast, after IV ICG administration, the background parenchymal signal and bleeding obscured the areas of bile leakage. A second dose of BL-760 demonstrated the utility of repeated injections, confirming two of the three previously visualized areas of bile leakage and revealing one previously unseen leak. In Animal 2, neither ID ICG nor IV BL-760 injections showed obvious areas of bile leakage. However, fluorescence signals were observed within the superficial intrahepatic bile ducts after both injections. CONCLUSIONS: BL-760 enables the rapid intraoperative visualization of small biliary structures and leaks, with the benefits of fast excretion, repeatable intravenous administration, and high-fluorescence TBR in the liver parenchyma. Potential applications include the identification of bile flow in the portal plate, biliary leak or duct injury, and postoperative monitoring of drain output. A thorough assessment of the intraoperative biliary anatomy could limit the need for postoperative drain placement, a possible contributor to severe complications and postoperative bile leak.


Assuntos
Bile , Corantes Fluorescentes , Suínos , Animais , Hepatectomia/efeitos adversos , Ductos Biliares/diagnóstico por imagem , Ductos Biliares/cirurgia , Ductos Biliares/lesões , Verde de Indocianina
9.
Angew Chem Int Ed Engl ; 62(28): e202305062, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163228

RESUMO

Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4'-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1, with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.


Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Camundongos , Anticorpos Monoclonais/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos
10.
J Am Chem Soc ; 144(25): 11075-11080, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35696546

RESUMO

Photoconvertible tracking strategies assess the dynamic migration of cell populations. Here we develop phototruncation-assisted cell tracking (PACT) and apply it to evaluate the migration of immune cells into tumor-draining lymphatics. This method is enabled by a recently discovered cyanine photoconversion reaction that leads to the two-carbon truncation and consequent blue-shift of these commonly used probes. By examining substituent effects on the heptamethine cyanine chromophore, we find that introduction of a single methoxy group increases the yield of the phototruncation reaction in neutral buffer by almost 8-fold. When converted to a membrane-bound cell-tracking variant, this probe can be applied in a series of in vitro and in vivo experiments. These include quantitative, time-dependent measurements of the migration of immune cells from tumors to tumor-draining lymph nodes. Unlike previously reported cellular photoconversion approaches, this method does not require genetic engineering and uses near-infrared (NIR) wavelengths. Overall, PACT provides a straightforward approach to label cell populations with spatiotemporal control.


Assuntos
Corantes , Neoplasias , Carbocianinas , Corantes Fluorescentes , Humanos
11.
Bioconjug Chem ; 33(7): 1241-1253, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35801843

RESUMO

Antibody-drug conjugates (ADCs) are a rapidly growing class of cancer therapeutics that seek to overcome the low therapeutic index of conventional cytotoxic agents. However, realizing this goal has been a significant challenge. ADCs comprise several independently modifiable components, including the antibody, payload, linker, and bioconjugation method. Many approaches have been developed to improve the physical properties, potency, and selectivity of ADCs. The anti-HER-2 antibody trastuzumab, first approved in 1998, has emerged as an exceptional targeting agent for ADCs, as well as a broadly used platform for testing new technologies. The extensive work in this area enables the comparison of various linker strategies, payloads, drug-to-antibody ratios (DAR), and mode of attachment. In this review, these conjugates, ranging from the first clinically approved trastuzumab ADC, ado-trastuzumab emtansine (Kadcyla), to the latest variants are described with the goal of providing a broad overview, as well as enabling the comparison of existing and emerging conjugate technologies.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Ado-Trastuzumab Emtansina , Antineoplásicos/química , Humanos , Imunoconjugados/química , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Trastuzumab/uso terapêutico
12.
Bioconjug Chem ; 33(4): 718-725, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35389618

RESUMO

Conjugates of small molecules and antibodies are broadly employed diagnostic and therapeutic agents. Appending a small molecule to an antibody often significantly impacts the properties of the resulting conjugate. Here, we detail a systematic study investigating the effect of various functional groups on the properties of antibody-fluorophore conjugates. This was done through the preparation and analysis of a series of masked heptamethine cyanines (CyMasks)-bearing amides with varied functional groups. These were designed to exhibit a broad range of physical properties, and include hydrophobic (-NMe2), pegylated (NH-PEG-8 or NH-PEG-24), cationic (NH-(CH2)2NMe3+), anionic (NH-(CH2)2SO3-), and zwitterionic (N-(CH2)2NMe3+)-(CH2)3SO3-) variants. The CyMask series was appended to monoclonal antibodies (mAbs) and analyzed for the effects on tumor targeting, clearance, and non-specific organ uptake. Among the series, zwitterionic and pegylated dye conjugates had the highest tumor-to-background ratio (TBR) and a low liver-to-background ratio. By contrast, the cationic and zwitterionic probes had high tumor signal and high TBR, although the latter also exhibited an elevated liver-to-background ratio (LBR). Overall, these studies provide a strategy to test the functional group effects and suggest that zwitterionic substituents possess an optimal combination of high tumor signal, TBR, and low LBR. These results suggest an appealing strategy to mask hydrophobic payloads, with the potential to improve the properties of bioconjugates in vivo.


Assuntos
Imunoconjugados , Neoplasias , Quinolinas , Anticorpos Monoclonais/química , Corantes Fluorescentes/química , Humanos , Imunoconjugados/química , Neoplasias/diagnóstico , Polietilenoglicóis/química
13.
Mol Pharm ; 19(11): 4241-4253, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36174110

RESUMO

Dye design can influence the ability of fluorescently labeled imaging agents to generate tumor contrast and has become an area of significant interest in the field of fluorescence-guided surgery (FGS). Here, we show that the charge-balanced near-infrared fluorescent (NIRF) dye FNIR-Tag enhances the imaging properties of a fluorescently labeled somatostatin analogue. In vitro studies showed that the optimized fluorescent conjugate MMC(FNIR-Tag)-TOC bound primarily via somatostatin receptor subtype-2 (SSTR2), whereas its negatively charged counterpart with IRDye 800CW had higher off-target binding. NIRF imaging in cell line- and patient-derived xenograft models revealed markedly higher tumor contrast with MMC(FNIR-Tag)-TOC, which was attributed to increased tumor specificity. Ex vivo staining of surgical biospecimens from primary and metastatic tumors, as well as involved lymph nodes, demonstrated binding to human tumors. Finally, in an orthotopic tumor model, a simulated clinical workflow highlighted our unique ability to use standard preoperative nuclear imaging for selecting patients likely to benefit from SSTR2-targeted FGS. Our findings demonstrate the translational potential of MMC(FNIR-Tag)-TOC for intraoperative imaging and suggest broad utility for using FNIR-Tag in fluorescent probe development.


Assuntos
Neoplasias , Cirurgia Assistida por Computador , Animais , Camundongos , Humanos , Receptores de Somatostatina , Camundongos Nus , Corantes Fluorescentes/metabolismo , Cirurgia Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Linhagem Celular Tumoral
14.
Lasers Surg Med ; 54(2): 305-310, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490931

RESUMO

BACKGROUND AND OBJECTIVES: Bile duct injury during laparoscopic cholecystectomy has an incidence rate of 1%-2% and commonly appears under conditions of severe inflammation, adhesion, or unexpected anatomical variations. Despite the difficulties and rising concerns of identifying bile duct during surgeries, surgeons do not have a specific modality to identify bile duct except intraoperative cholangiography. While no biliary-specific fluorescent dye exists for clinical use, our team has previously described the development of a preclinical biliary-specific dye, BL-760. Here, we present our study of laparoscopic cholecystectomy using the fluorescent dye in a swine model. STUDY DESIGN/MATERIALS AND METHODS: With an approval from Institutional Animal Care and Use Committee, two 20-25 kg swine underwent laparoscopic abdominal surgery using a Food and Drug Administration-cleared fluorescent laparoscopic system. Images of the liver and gallbladder were taken both before and after intravenous injection of the novel fluorescent dye. The dye was dosed at 60 µg/kg and injected via the ear vein. The amount of time taken to visualize fluorescence in the biliary tract was measured. Fluorescent signal was observed after injection, and target-to-background ratio (TBR) of the biliary tract to surrounding cystic artery and liver parenchyma was measured. RESULTS: Biliary tract visualization under fluorescent laparoscopy was achieved within 5 min after the dye injection without any adverse effects. Cystic duct and extrahepatic duct were clearly visualized and identified with TBR values of 2.19 and 2.32, respectively, whereas no fluorescent signal was detected in liver. Cystic duct and artery were successfully ligated by an endoscopic clip applier with the visual assistance of highlighted biliary tract images. Laparoscopic cholecystectomy was completed within 30 min in each case without any complications. CONCLUSIONS: BL-760 is a novel preclinical fluorescent dye useful for intraoperative identification and visualization of biliary tract. Such fluorescent dye that is exclusively metabolized by liver and rapidly excreted into biliary tract would be beneficial for all types of hepato-biliary surgeries. With the validation of additional preclinical data, this novel dye has potential to be a valuable tool to prevent any iatrogenic biliary injuries and/or bile leaks during laparoscopic abdominal and liver surgeries.


Assuntos
Sistema Biliar , Colecistectomia Laparoscópica , Animais , Ductos Biliares/diagnóstico por imagem , Ductos Biliares/lesões , Ductos Biliares/cirurgia , Colangiografia/métodos , Colecistectomia Laparoscópica/métodos , Corantes Fluorescentes , Suínos , Estados Unidos
15.
J Am Chem Soc ; 143(15): 5674-5679, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33844539

RESUMO

Fluorogenic probes in the near-infrared (NIR) region have the potential to provide stimuli-dependent information in living organisms. Here, we describe a new class of fluorogenic probes based on the heptamethine cyanine scaffold, the most broadly used NIR chromophore. These compounds result from modification of heptamethine norcyanines with stimuli-responsive carbamate linkers. The resulting cyanine carbamates (CyBams) exhibit exceptional turn-ON ratios (∼170×) due to dual requirements for NIR emission: carbamate cleavage through 1,6-elimination and chromophore protonation. Illustrating their utility in complex in vivo settings, a γ-glutamate substituted CyBam was applied to imaging γ-glutamyl transpeptidase (GGT) activity in a metastatic model of ovarian cancer. Overall, CyBams have significant potential to extend the reach of fluorogenic strategies to intact tissue and live animal imaging applications.


Assuntos
Carbamatos/química , Carbocianinas/química , Corantes Fluorescentes/química , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Microscopia Confocal , Metástase Neoplásica , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Transplante Heterólogo , gama-Glutamiltransferase/química , gama-Glutamiltransferase/metabolismo
16.
J Am Chem Soc ; 143(51): 21667-21675, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34928588

RESUMO

Antibody-drug conjugates (ADCs) are a rapidly emerging therapeutic platform. The chemical linker between the antibody and the drug payload plays an essential role in the efficacy and tolerability of these agents. New methods that quantitatively assess the cleavage efficiency in complex tissue settings could provide valuable insights into the ADC design process. Here we report the development of a near-infrared (NIR) optical imaging approach that measures the site and extent of linker cleavage in mouse models. This approach is enabled by a superior variant of our recently devised cyanine carbamate (CyBam) platform. We identify a novel tertiary amine-containing norcyanine, the product of CyBam cleavage, that exhibits a dramatically increased cellular signal due to an improved cellular permeability and lysosomal accumulation. The resulting cyanine lysosome-targeting carbamates (CyLBams) are ∼50× brighter in cells, and we find this strategy is essential for high-contrast in vivo targeted imaging. Finally, we compare a panel of several common ADC linkers across two antibodies and tumor models. These studies indicate that cathepsin-cleavable linkers provide dramatically higher tumor activation relative to hindered or nonhindered disulfides, an observation that is only apparent with in vivo imaging. This strategy enables quantitative comparisons of cleavable linker chemistries in complex tissue settings with implications across the drug delivery landscape.


Assuntos
Carbamatos/química , Corantes Fluorescentes/química , Imunoconjugados/química , Animais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem
17.
Tetrahedron Lett ; 752021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34321699

RESUMO

Site specific labeling methods have significant potential to enhance the properties of antibody conjugates. While studied extensively in the context of antibody-drug conjugates (ADCs), few studies have examined the impact of homogenous labeling on the properties of antibody-fluorophore conjugates (AFCs). We report the application of pentafluorophenyl (PFP) esters, which had previously been shown to be reasonably selective for K188 of the kappa light chain of human IGG antibodies, toward producing AFCs. We show that simple replacement of N-hydroxy succinimide (NHS) with PFP dramatically increases the light-chain specificity of near-infrared (NIR) AFCs. Comparing the properties of AFCs labeled using NHS and PFP-activated esters reveals that the latter exhibits reduced aggregation and improved brightness, both in vitro and in vivo. Overall, the use of PFP esters provides a remarkably simple approach to provide selectively labeled antibodies with improved properties.

18.
Angew Chem Int Ed Engl ; 60(51): 26685-26693, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606673

RESUMO

Cyanine dyes are exceptionally useful probes for a range of fluorescence-based applications, but their photon output can be limited by trans-to-cis photoisomerization. We recently demonstrated that appending a ring system to the pentamethine cyanine ring system improves the quantum yield and extends the fluorescence lifetime. Here, we report an optimized synthesis of persulfonated variants that enable efficient labeling of nucleic acids and proteins. We demonstrate that a bifunctional sulfonated tertiary amide significantly improves the optical properties of the resulting bioconjugates. These new conformationally restricted cyanines are compared to the parent cyanine derivatives in a range of contexts. These include their use in the plasmonic hotspot of a DNA-nanoantenna, in single-molecule Förster-resonance energy transfer (FRET) applications, far-red fluorescence-lifetime imaging microscopy (FLIM), and single-molecule localization microscopy (SMLM). These efforts define contexts in which eliminating cyanine isomerization provides meaningful benefits to imaging performance.


Assuntos
Carbocianinas/química , Fótons , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Conformação Molecular
19.
J Am Chem Soc ; 142(29): 12681-12689, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32594743

RESUMO

Cyanines (Cy3, Cy5, Cy3B) are the most utilized dyes for single-molecule fluorescence and localization-based super-resolution imaging. These modalities exploit cyanines' versatile photochemical behavior with thiols. A mechanism reconciling seemingly divergent results and enabling control over cyanine photoreactivity is however missing. Utilizing single-molecule fluorescence on Cy5 and Cy5B, transient-absorption spectroscopy, and DFT modeling on a range of cyanine dyes, herein we show that photoinduced electron transfer (PeT) from a thiolate to Cy in their triplet excited state and then triplet-to-singlet intersystem crossing in the nascent geminate radical pair are crucial steps. Next, a bifurcation occurs, yielding either back electron transfer and regeneration of ground state Cy, required for photostabilization, or Cy-thiol adduct formation, necessary for super-resolution microscopy. Cy regeneration via photoinduced thiol elimination is favored by adduct absorption spectra broadening. Elimination is also shown to occur through an acid-catalyzed reaction. Overall, our work provides a roadmap for designing fluorophores, photoswitching agents, and triplet excited state quenchers for single-molecule and super-resolution imaging.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Compostos de Sulfidrila/química , Teoria da Densidade Funcional , Estrutura Molecular , Processos Fotoquímicos
20.
Hepatology ; 70(2): 563-576, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30353932

RESUMO

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death in the world. Therapeutic outcomes of HCC remain unsatisfactory, and novel treatments are urgently needed. GPC3 (glypican-3) is an emerging target for HCC, given the findings that 1) GPC3 is highly expressed in more than 70% of HCC; (2) elevated GPC3 expression is linked with poor HCC prognosis; and (3) GPC3-specific therapeutics, including immunotoxin, bispecific antibody and chimeric antigen receptor T cells. have shown promising results. Here, we postulate that GPC3 is a potential target of antibody-drug conjugates (ADCs) for treating liver cancer. To determine the payload for ADCs against liver cancer, we screened three large drug libraries (> 9,000 compounds) against HCC cell lines and found that the most potent drugs are DNA-damaging agents. Duocarmycin SA and pyrrolobenzodiazepine dimer were chosen as the payloads to construct two GPC3-specific ADCs: hYP7-DC and hYP7-PC. Both ADCs showed potency at picomolar concentrations against a panel of GPC3-positive cancer cell lines, but not GPC3 negative cell lines. To improve potency, we investigated the synergetic effect of hYP7-DC with approved drugs. Gemcitabine showed a synergetic effect with hYP7-DC in vitro and in vivo. Furthermore, single treatment of hYP7-PC induced tumor regression in multiple mouse models. Conclusion: We provide an example of an ADC targeting GPC3, suggesting a strategy for liver cancer therapy.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Glipicanas/antagonistas & inibidores , Imunoconjugados/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA