Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Circ Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828596

RESUMO

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDLs relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.

3.
J Lipid Res ; 65(4): 100531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490635

RESUMO

Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 µl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.


Assuntos
Apolipoproteínas , Marcação por Isótopo , Proteômica , Animais , Camundongos , Proteômica/métodos , Apolipoproteínas/sangue , Cinética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/sangue , Cromatografia Líquida/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Masculino
4.
J Lipid Res ; 64(6): 100381, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100172

RESUMO

Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional CVD risk factors cannot completely explain the increased risk. Altered HDL proteome is linked with incident CVD in CKD patients, but it is unclear whether other HDL metrics are associated with incident CVD in this population. In the current study, we analyzed samples from two independent prospective case-control cohorts of CKD patients, the Clinical Phenotyping and Resource Biobank Core (CPROBE) and the Chronic Renal Insufficiency Cohort (CRIC). We measured HDL particle sizes and concentrations (HDL-P) by calibrated ion mobility analysis and HDL cholesterol efflux capacity (CEC) by cAMP-stimulated J774 macrophages in 92 subjects from the CPROBE cohort (46 CVD and 46 controls) and in 91 subjects from the CRIC cohort (34 CVD and 57 controls). We tested associations of HDL metrics with incident CVD using logistic regression analysis. No significant associations were found for HDL-C or HDL-CEC in either cohort. Total HDL-P was only negatively associated with incident CVD in the CRIC cohort in unadjusted analysis. Among the six sized HDL subspecies, only medium-sized HDL-P was significantly and negatively associated with incident CVD in both cohorts after adjusting for clinical confounders and lipid risk factors with odds ratios (per 1-SD) of 0.45 (0.22-0.93, P = 0.032) and 0.42 (0.20-0.87, P = 0.019) for CPROBE and CRIC cohorts, respectively. Our observations indicate that medium-sized HDL-P-but not other-sized HDL-P or total HDL-P, HDL-C, or HDL-CEC-may be a prognostic cardiovascular risk marker in CKD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/complicações , HDL-Colesterol , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia
5.
J Neuroinflammation ; 20(1): 66, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895046

RESUMO

BACKGROUND: Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS: Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), ßIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS: Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVß3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS: OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.


Assuntos
Helicobacter pylori , Camundongos , Animais , Helicobacter pylori/metabolismo , Astrócitos , Urease/metabolismo , Urease/farmacologia , NF-kappa B/metabolismo , Fator B do Complemento/metabolismo , Fator B do Complemento/farmacologia , Modelos Animais de Doenças , Espectrometria de Massas em Tandem , Neurônios
6.
J Lipid Res ; 63(4): 100196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35300983

RESUMO

Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein-SFTPB (pulmonary surfactant protein B)-predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12-4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker-and perhaps mediator-of CVD risk in patients with T1DM.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Proteína B Associada a Surfactante Pulmonar , HDL-Colesterol , Diabetes Mellitus Tipo 1/complicações , Humanos , Estudos Prospectivos , Fatores de Risco , Espectrometria de Massas em Tandem
7.
J Lipid Res ; 62: 100135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34634315

RESUMO

Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional lipid risk factors, including low HDL levels, cannot completely explain the increased risk. Altered HDL proteome is linked with both CVD and CKD, but the role of HDL proteins in incident CVD events in patients with CKD is unknown. In this prospective case-control study, we used targeted proteomics to quantify 31 HDL proteins in 92 subjects (46 incident new CVD and 46 one-to-one matched controls) at various stages of CKD. We tested associations of HDL proteins with incident CVD using matched logistic regression analysis. In the model fully adjusted for clinical confounders, lipid levels, C-reactive protein, and proteinuria, no significant associations were found for HDL-C, but we observed inverse associations between levels of HDL proteins paraoxonase/arylesterase 1 (PON1), paraoxonase/arylesterase 3 (PON3), and LCAT and incident CVD. Odds ratios (per 1 SD) were 0.38 (0.18-0.97, P = 0.042), 0.42 (0.20-0.92, P = 0.031), and 0.30 (0.11-0.83, P = 0.020) for PON1, PON3, and LCAT, respectively. Apolipoprotein A-IV remained associated with incident CVD in CKD patients in models adjusted for clinical confounders and lipid levels but lost significance with the addition of C-reactive protein and proteinuria to the model. In conclusion, levels of four HDL proteins, PON1, PON3, LCAT, and apolipoprotein A-IV, were found to be inversely associated with incident CVD events in CKD patients. Our observations indicate that HDLs' protein cargo, but not HDL-C levels, can serve as a marker-and perhaps mediator-for elevated CVD risk in CKD patients.


Assuntos
Doenças Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Insuficiência Renal Crônica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas A/metabolismo , Arildialquilfosfatase/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Análise de Regressão
8.
Arterioscler Thromb Vasc Biol ; 39(7): 1483-1491, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31092010

RESUMO

Objective- Albuminuria is an important risk factor for cardiovascular disease in diabetes mellitus. We determined whether albuminuria associates with alterations in the proteome of HDL (high-density lipoprotein) of subjects with type 1 diabetes mellitus and whether those alterations associated with coronary artery calcification. Approach and Results- In a cross-sectional study of 191 subjects enrolled in the DCCT (Diabetes Control and Complications Trial)/EDIC study (Epidemiology of Diabetes Interventions and Complications), we used isotope dilution tandem mass spectrometry to quantify 46 proteins in HDL. Stringent statistical analysis demonstrated that 8 proteins associated with albuminuria. Two of those proteins, AMBP (α1-microglobulin/bikunin precursor) and PTGDS (prostaglandin-H2 D-isomerase), strongly and positively associated with the albumin excretion rate ( P<10-6). Furthermore, PON (paraoxonase) 1 and PON3 levels in HDL strongly and negatively associated with the presence of coronary artery calcium, with odds ratios per 1-SD difference of 0.63 (95% CI, 0.43-0.92; P=0.018) for PON1 and 0.59 (95% CI, 0.40-0.87; P=0.0079) for PON3. Only 1 protein, PON1, associated with both albumin excretion rate and coronary artery calcification. Conclusions- Our observations indicate that the HDL proteome is remodeled in type 1 diabetes mellitus subjects with albuminuria. Moreover, low concentrations of the antiatherosclerotic protein PON1 in HDL associated with both albuminuria and coronary artery calcification, raising the possibility that alterations in HDL protein cargo mediate, in part, the known association of albuminuria with cardiovascular risk in type 1 diabetes mellitus. Visual Overview- An online visual overview is available for this article.


Assuntos
Albuminúria/etiologia , Doença da Artéria Coronariana/etiologia , Diabetes Mellitus Tipo 1/complicações , Lipoproteínas HDL/fisiologia , Proteômica , Calcificação Vascular/etiologia , Adulto , Arildialquilfosfatase/fisiologia , Estudos Transversais , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade
10.
Expert Rev Proteomics ; 15(1): 31-40, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29113513

RESUMO

INTRODUCTION: Many lines of evidence indicate that low levels of HDL cholesterol increase the risk of cardiovascular disease (CVD). However, recent clinical studies of statin-treated subjects with established atherosclerosis cast doubt on the hypothesis that elevating HDL cholesterol levels reduces CVD risk. Areas covered: It is critical to identify new HDL metrics that capture HDL's proposed cardioprotective effects. One promising approach is quantitative MS/MS-based HDL proteomics. This article focuses on recent studies of the feasibility and challenges of using this strategy in translational studies. It also discusses how lipid-lowering therapy and renal disease alter HDL's functions and proteome, and how HDL might serve as a platform for binding proteins with specific functional properties. Expert commentary: It is clear that HDL has a diverse protein cargo and that its functions extend well beyond its classic role in lipid transport and reverse cholesterol transport. MS/MS analysis has demonstrated that HDL might contain >80 different proteins. Key challenges are demonstrating that these proteins truly associate with HDL, are functionally important, and that MS-based HDL proteomics can reproducibly detect biomarkers in translational studies of disease risk.


Assuntos
Doenças Cardiovasculares/metabolismo , HDL-Colesterol/análise , HDL-Colesterol/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Humanos , Proteômica , Espectrometria de Massas em Tandem
11.
Circ Res ; 119(1): 83-90, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27114438

RESUMO

RATIONALE: Coronary endothelial dysfunction (ED)-an early marker of atherosclerosis-increases the risk of cardiovascular events. OBJECTIVE: We tested the hypothesis that cholesterol efflux capacity and high-density lipoprotein (HDL) particle concentration predict coronary ED better than HDL-cholesterol (HDL-C). METHODS AND RESULTS: We studied 80 subjects with nonobstructive (<30% stenosis) coronary artery disease. ED was defined as <50% change in coronary blood flow in response to intracoronary infusions of acetylcholine during diagnostic coronary angiography. Cholesterol efflux capacity and HDL particle concentration (HDL-PIMA) were assessed with validated assays. Cholesterol efflux capacity and HDL-PIMA were both strong, inverse predictors of ED (P<0.001 and 0.005, respectively). In contrast, HDL-C and other traditional lipid risk factors did not differ significantly between control and ED subjects. Large HDL particles were markedly decreased in ED subjects (33%; P=0.005). After correction for HDL-C, both efflux capacity and HDL-PIMA remained significant predictors of ED status. HDL-PIMA explained cholesterol efflux capacity more effectively than HDL-C (r=0.54 and 0.36, respectively). The efflux capacities of isolated HDL and serum HDL correlated strongly (r=0.49). CONCLUSIONS: Cholesterol efflux capacity and HDL-PIMA are reduced in subjects with coronary ED, independently of HDL-C. Alterations in HDL-PIMA and HDL itself account for a much larger fraction of the variation in cholesterol efflux capacity than does HDL-C. A selective decrease in large HDL particles may contribute to impaired cholesterol efflux capacity in ED subjects. These observations support a role for HDL size, concentration, and function as markers-and perhaps mediators-of coronary atherosclerosis in humans.


Assuntos
HDL-Colesterol/metabolismo , Doença da Artéria Coronariana/sangue , Endotélio Vascular/metabolismo , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , HDL-Colesterol/sangue , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Circ Res ; 114(11): 1733-42, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24647144

RESUMO

RATIONALE: The efflux capacity of high-density lipoprotein (HDL) with cultured macrophages associates strongly and negatively with coronary artery disease status, indicating that impaired sterol efflux capacity might be a marker-and perhaps mediator-of atherosclerotic burden. However, the mechanisms that contribute to impaired sterol efflux capacity remain poorly understood. OBJECTIVE: Our aim was to determine the relationship between myeloperoxidase-mediated oxidative damage to apolipoprotein A-I, the major HDL protein, and the ability of HDL to remove cellular cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. METHODS AND RESULTS: We quantified both site-specific oxidation of apolipoprotein A-I and HDL's ABCA1 cholesterol efflux capacity in control subjects and subjects with stable coronary artery disease or acute coronary syndrome. Subjects with coronary artery disease and acute coronary syndrome had higher levels of chlorinated tyrosine 192 and oxidized methionine 148 compared with control subjects. In contrast, plasma levels of myeloperoxidase did not differ between the groups. HDL from the subjects with coronary artery disease and acute coronary syndrome was less able to accept cholesterol from cells expressing ABCA1 compared with HDL from control subjects. Levels of chlorinated tyrosine and oxidized methionine associated inversely with ABCA1 efflux capacity and positively with atherosclerotic disease status. These differences remained significant after adjusting for HDL-cholesterol levels. CONCLUSIONS: Our observations indicate that myeloperoxidase may contribute to the generation of dysfunctional HDL with impaired ABCA1 efflux capacity in humans with atherosclerosis. Quantification of chlorotyrosine and oxidized methionine in circulating HDL might be useful indicators of the risk of cardiovascular disease that are independent of HDL-cholesterol.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Peroxidase/metabolismo , Transdução de Sinais/fisiologia , Síndrome Coronariana Aguda/metabolismo , Síndrome Coronariana Aguda/fisiopatologia , Idoso , Apolipoproteína A-I/metabolismo , Aterosclerose/fisiopatologia , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Feminino , Humanos , Masculino , Metionina/metabolismo , Pessoa de Meia-Idade , Oxirredução
13.
J Proteome Res ; 14(7): 2792-806, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26011469

RESUMO

Cardiovascular disease is the leading cause of death in end-stage renal disease (ESRD) patients treated with hemodialysis. An important contributor might be a decline in the cardioprotective effects of high-density lipoprotein (HDL). One important factor affecting HDL's cardioprotective properties may involve the alterations of protein composition in HDL. In the current study, we used complementary proteomics approaches to detect and quantify relative levels of proteins in HDL isolated from control and ESRD subjects. Shotgun proteomics analysis of HDL isolated from 20 control and 40 ESRD subjects identified 63 proteins in HDL. Targeted quantitative proteomics by isotope-dilution selective reaction monitoring revealed that 22 proteins were significantly enriched and 6 proteins were significantly decreased in ESRD patients. Strikingly, six proteins implicated in renal disease, including B2M, CST3, and PTGDS, were markedly increased in HDL of uremic subjects. Moreover, several of these proteins (SAA1, apoC-III, PON1, etc.) have been associated with atherosclerosis. Our observations indicate that the HDL proteome is extensively remodeled in uremic subjects. Alterations of the protein cargo of HDL might impact HDL's proposed cardioprotective properties. Quantifying proteins in HDL may be useful in the assessment of cardiovascular risk in patients with ESRD and in assessing response to therapeutic interventions.


Assuntos
Falência Renal Crônica/sangue , Lipoproteínas HDL/sangue , Diálise Renal , Adulto , Sequência de Aminoácidos , Cistatina C/química , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular
14.
BMC Nephrol ; 16: 183, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26531095

RESUMO

BACKGROUND: Coenzyme Q10 (CoQ10) supplementation improves mitochondrial coupling of respiration to oxidative phosphorylation, decreases superoxide production in endothelial cells, and may improve functional cardiac capacity in patients with congestive heart failure. There are no studies evaluating the safety, tolerability and efficacy of varying doses of CoQ10 in chronic hemodialysis patients, a population subject to increased oxidative stress. METHODS: We performed a dose escalation study to test the hypothesis that CoQ10 therapy is safe, well-tolerated, and improves biomarkers of oxidative stress in patients receiving hemodialysis therapy. Plasma concentrations of F2-isoprostanes and isofurans were measured to assess systemic oxidative stress and plasma CoQ10 concentrations were measured to determine dose, concentration and response relationships. RESULTS: Fifteen of the 20 subjects completed the entire dose escalation sequence. Mean CoQ10 levels increased in a linear fashion from 704 ± 286 ng/mL at baseline to 4033 ± 1637 ng/mL, and plasma isofuran concentrations decreased from 141 ± 67.5 pg/mL at baseline to 72.2 ± 37.5 pg/mL at the completion of the study (P = 0.003 vs. baseline and P < 0.001 for the effect of dose escalation on isofurans). Plasma F2-isoprostane concentrations did not change during the study. CONCLUSIONS: CoQ10 supplementation at doses as high as 1800 mg per day was safe in all subjects and well-tolerated in most. Short-term daily CoQ10 supplementation decreased plasma isofuran concentrations in a dose dependent manner. CoQ10 supplementation may improve mitochondrial function and decrease oxidative stress in patients receiving hemodialysis. TRIAL REGISTRATION: This clinical trial was registered on clinicaltrials.gov [NCT00908297] on May 21, 2009.


Assuntos
Suplementos Nutricionais , Falência Renal Crônica/terapia , Estresse Oxidativo/efeitos dos fármacos , Diálise Renal/métodos , Ubiquinona/análogos & derivados , Administração Oral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Feminino , Humanos , Masculino , Concentração Máxima Permitida , Pessoa de Meia-Idade , Ubiquinona/administração & dosagem , Ubiquinona/efeitos adversos , Ubiquinona/farmacocinética , Estados Unidos , Adulto Jovem
15.
Biochemistry ; 53(48): 7625-40, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25423138

RESUMO

High-density lipoprotein (HDL) retards atherosclerosis by accepting cholesterol from the artery wall. However, the structure of the proposed acceptor, monomeric apolipoprotein A-I (apoA-I), the major protein of HDL, is poorly understood. Two published models for monomeric apoA-I used cross-linking distance constraints to derive best fit conformations. This approach has limitations. (i) Cross-linked peptides provide no information about secondary structure. (ii) A protein chain can be folded in multiple ways to create a best fit. (iii) Ad hoc folding of a secondary structure is unlikely to produce a stable orientation of hydrophobic and hydrophilic residues. To address these limitations, we used a different approach. We first noted that the dimeric apoA-I crystal structure, (Δ185-243)apoA-I, is topologically identical to a monomer in which helix 5 forms a helical hairpin, a monomer with a hydrophobic cleft running the length of the molecule. We then realized that a second crystal structure, (Δ1-43)apoA-I, contains a C-terminal structure that fits snuggly via aromatic and hydrophobic interactions into the hydrophobic cleft. Consequently, we combined these crystal structures into an initial model that was subjected to molecular dynamics simulations. We tested the initial and simulated models and the two previously published models in three ways: against two published data sets (domains predicted to be helical by H/D exchange and six spin-coupled residues) and against our own experimentally determined cross-linking distance constraints. We note that the best fit simulation model, superior by all tests to previously published models, has dynamic features of a molten globule with interesting implications for the functions of apoA-I.


Assuntos
Apolipoproteína A-I/química , Algoritmos , Apolipoproteína A-I/metabolismo , Simulação por Computador , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
16.
Biochemistry ; 52(39): 6766-78, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23984834

RESUMO

The antiatherogenic properties of apolipoprotein A-I (apoA-I) are derived, in part, from lipidation-state-dependent structural elements that manifest at different stages of apoA-I's progression from lipid-free protein to spherical high-density lipoprotein (HDL). Previously, we reported the structure of apoA-I's N-terminus on reconstituted HDLs (rHDLs) of different sizes. We have now investigated at the single-residue level the conformational adaptations of three regions in the central domain of apoA-I (residues 119-124, 139-144, and 164-170) upon apoA-I lipid binding and HDL formation. An important function associated with these residues of apoA-I is the activation of lecithin:cholesterol acyltransferase (LCAT), the enzyme responsible for catalyzing HDL maturation. Structural examination was performed by site-directed tryptophan fluorescence and spin-label electron paramagnetic resonance spectroscopies for both the lipid-free protein and rHDL particles 7.8, 8.4, and 9.6 nm in diameter. The two methods provide complementary information about residue side chain mobility and molecular accessibility, as well as the polarity of the local environment at the targeted positions. The modulation of these biophysical parameters yielded new insight into the importance of structural elements in the central domain of apoA-I. In particular, we determined that the loosely lipid-associated structure of residues 134-145 is conserved in all rHDL particles. Truncation of this region completely abolished LCAT activation but did not significantly affect rHDL size, reaffirming the important role of this structural element in HDL function.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/classificação , Lipoproteínas HDL/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Lipoproteínas HDL/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/metabolismo
17.
J Biol Chem ; 287(9): 6375-86, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22219194

RESUMO

Oxidative damage by myeloperoxidase (MPO) has been proposed to deprive HDL of its cardioprotective effects. In vitro studies reveal that MPO chlorinates and nitrates specific tyrosine residues of apoA-I, the major HDL protein. After Tyr-192 is chlorinated, apoA-I is less able to promote cholesterol efflux by the ABCA1 pathway. To investigate the potential role of this pathway in vivo, we used tandem mass spectrometry with selected reaction monitoring to quantify the regiospecific oxidation of apoA-I. This approach demonstrated that Tyr-192 is the major chlorination site in apoA-I in both plasma and lesion HDL of humans. We also found that Tyr-192 is the major nitration site in apoA-I of circulating HDL but that Tyr-18 is the major site in lesion HDL. Levels of 3-nitrotyrosine strongly correlated with levels of 3-chlorotyrosine in lesion HDL, and Tyr-18 of apoA-I was the major nitration site in HDL exposed to MPO in vitro, suggesting that MPO is the major pathway for chlorination and nitration of HDL in human atherosclerotic tissue. These observations may have implications for treating cardiovascular disease, because recombinant apoA-I is under investigation as a therapeutic agent and mutant forms of apoA-I that resist oxidation might be more cardioprotective than the native form.


Assuntos
Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Lipoproteínas HDL/metabolismo , Estresse Oxidativo/fisiologia , Peroxidase/metabolismo , Halogenação/fisiologia , Humanos , Ácido Hipocloroso/farmacologia , Nitrogênio/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , Tirosina/análogos & derivados , Tirosina/metabolismo
18.
Biochim Biophys Acta ; 1821(3): 490-501, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178192

RESUMO

The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/fisiologia , Transportador 1 de Cassete de Ligação de ATP , Motivos de Aminoácidos , Animais , Apolipoproteína A-I/química , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Halogenação , Humanos , Inflamação/metabolismo , Macrófagos/enzimologia , Oxidantes/metabolismo , Oxirredução , Peroxidase/metabolismo
19.
Front Oncol ; 12: 962920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313672

RESUMO

Chronic Helicobacter pylori (H. pylori) infection is considered the main risk factor for the development of gastric cancer. Pathophysiological changes in the gastric mucosa initiated by this bacterium can persist even after pharmacological eradication and are likely attributable also to changes induced in non-infected cells as a consequence of intercellular communication via extracellular vesicles (EVs). To better understand what such changes might entail, we isolated EVs from immortalized normal gastric GES-1 cells infected (EVHp+) or not with H. pylori (EVHp-) by ultracentrifugation and characterized them. Infection of GES-1 cells with H. pylori significantly increased the release of EVs and slightly decreased the EV mean size. Incubation with EVHp+ for 24 h decreased the viability of GES-1 cells, but increased the levels of IL-23 in GES-1 cells, as well as the migration of GES-1 and gastric cancer AGS cells. Furthermore, incubation of GES-1 and AGS cells with EVHp+, but not with EVHp-, promoted cell invasion and trans-endothelial migration in vitro. Moreover, stimulation of endothelial EA.hy926 cells for 16 h with EVHp+ promoted the formation of linked networks. Finally, analysis by mass spectrometry identified proteins uniquely present and others enriched in EVHp+ compared to EVHp-, several of which are known targets of hypoxia induced factor-1α (HIF-1α) that may promote the acquisition of traits important for the genesis/progression of gastric pre-neoplastic changes associated with H. pylori infection. In conclusion, the harmful effects of H. pylori infection associated with the development of gastric malignancies may spread via EVs to non-infected areas in the early and later stages of gastric carcinogenesis.

20.
J Biol Chem ; 285(24): 18847-57, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20385548

RESUMO

An important event in cholesterol metabolism is the efflux of cellular cholesterol by apolipoprotein A-I (apoA-I), the major protein of high density lipoproteins (HDL). Lipid-free apoA-I is the preferred substrate for ATP-binding cassette A1, which promotes cholesterol efflux from macrophage foam cells in the arterial wall. However, the vast majority of apoA-I in plasma is associated with HDL, and the mechanisms for the generation of lipid-free apoA-I remain poorly understood. In the current study, we used fluorescently labeled apoA-I that exhibits a distinct fluorescence emission spectrum when in different states of lipid association to establish the kinetics of apoA-I transition between the lipid-associated and lipid-free states. This approach characterized the spontaneous and rapid exchange of apoA-I between the lipid-associated and lipid-free states. In contrast, the kinetics of apoA-I exchange were significantly reduced when apoA-I on HDL was cross-linked with a bi-functional reagent or oxidized by myeloperoxidase. Our observations support the hypothesis that oxidative damage to apoA-I by myeloperoxidase limits the ability of apoA-I to be liberated in a lipid-free form from HDL. This impairment of apoA-I exchange reaction may be a trait of dysfunctional HDL contributing to reduced ATP-binding cassette A1-mediated cholesterol efflux and atherosclerosis.


Assuntos
Lipídeos/química , Lipoproteínas HDL/química , Oxigênio/química , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Cinética , Mutação , Peroxidase/química , Proteínas Recombinantes/química , Espectrometria de Fluorescência/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA