Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(3): e55643, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36592158

RESUMO

Extensive desmoplasia and poor vasculature renders pancreatic tumors severely hypoxic, contributing to their aggressiveness and therapy resistance. Here, we identify the HuR/MYB/HIF1α axis as a critical regulator of the metabolic plasticity and hypoxic survival of pancreatic cancer cells. HuR undergoes nuclear-to-cytoplasmic translocation under hypoxia and stabilizes MYB transcripts, while MYB transcriptionally upregulates HIF1α. Upon MYB silencing, pancreatic cancer cells fail to survive and adapt metabolically under hypoxia, despite forced overexpression of HIF1α. MYB induces the transcription of several HIF1α-regulated glycolytic genes by directly binding to their promoters, thus enhancing the recruitment of HIF1α to hypoxia-responsive elements through its interaction with p300-dependent histone acetylation. MYB-depleted pancreatic cancer cells exhibit a dramatic reduction in tumorigenic ability, glucose-uptake and metabolism in orthotopic mouse model, even after HIF1α restoration. Together, our findings reveal an essential role of MYB in metabolic reprogramming that supports pancreatic cancer cell survival under hypoxia.


Assuntos
Neoplasias Pancreáticas , Camundongos , Animais , Neoplasias Pancreáticas/genética , Hipóxia , Regiões Promotoras Genéticas , Hipóxia Celular/genética , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
2.
J Biol Chem ; 299(1): 102725, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410437

RESUMO

MYB, a proto-oncogene, is overexpressed in prostate cancer (PCa) and promotes its growth, aggressiveness, and resistance to androgen-deprivation therapy. Here, we examined the effect of androgen signaling on MYB expression and delineated the underlying molecular mechanisms. Paralleling a dichotomous effect on growth, low-dose androgen induced MYB expression at both transcript and protein levels, whereas it was suppressed in high-dose androgen-treated PCa cells. Interestingly, treatment with both low- and high-dose androgen transcriptionally upregulated MYB by increasing the binding of androgen receptor to the MYB promoter. In a time-course assay, androgen induced MYB expression at early time points followed by a sharp decline in high-dose androgen-treated cells due to decreased stability of MYB mRNA. Additionally, profiling of MYB-targeted miRNAs demonstrated significant induction of miR-150 in high-dose androgen-treated PCa cells. We observed a differential binding of androgen receptor on miR-150 promoter with significantly greater occupancy recorded in high-dose androgen-treated cells than those treated with low-dose androgen. Functional inhibition of miR-150 relieved MYB suppression by high-dose androgen, while miR-150 mimic abolished MYB induction by low-dose androgen. Furthermore, MYB-silencing or miR-150 mimic transfection suppressed PCa cell growth induced by low-dose androgen, whereas miR-150 inhibition rescued PCa cells from growth repression by high-dose androgen. Similarly, we observed that MYB silencing suppressed the expression of androgen-responsive, cell cycle-related genes in low-dose androgen-treated cells, while miR-150 inhibition increased their expression in cells treated with high-dose androgen. Overall, these findings reveal novel androgen-mediated mechanisms of MYB regulation that support its biphasic growth control in PCa cells.


Assuntos
Androgênios , MicroRNAs , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myb , Humanos , Masculino , Antagonistas de Androgênios , Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Processamento de Proteína Pós-Traducional , Células Tumorais Cultivadas
3.
Small ; 20(7): e2305605, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803918

RESUMO

Neuromorphic computing is a potential approach for imitating massive parallel processing capabilities of a bio-synapse. To date, memristors have emerged as the most appropriate device for designing artificial synapses for this purpose due to their excellent analog switching capacities with high endurance and retention. However, to build an operational neuromorphic platform capable of processing high-density information, memristive synapses with nanoscale footprint are important, albeit with device size scaled down, retaining analog plasticity and low power requirement often become a challenge. This paper demonstrates site-selective self-assembly of Au nanoparticles on a patterned TiOx layer formed as a result of ion-induced self-organization, resulting in site-specific resistive switching and emulation of bio-synaptic behavior (e.g., potentiation, depression, spike rate-dependent and spike timing-dependent plasticity, paired pulse facilitation, and post tetanic potentiation) at nanoscale. The use of local probe-based methods enables nanoscale probing on the anisotropic films. With the help of various microscopic and spectroscopic analytical tools, the observed results are attributed to defect migration and self-assembly of implanted Au atoms on self-organized TiOx surfaces. By leveraging the site-selective evolution of gold-nanostructures, the functionalized TiOx surface holds significant potential in a multitude of fields for developing cutting-edge neuromorphic computing platforms and Au-based biosensors with high-density integration.

4.
Phys Chem Chem Phys ; 26(6): 5311-5322, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38268444

RESUMO

To understand the physical phenomena responsible for radiation damage of the materials used in nuclear reactors, and thus study their operation life and/or efficiency, it is required to simulate the conditions by exposing the materials to energetic ions. Ceria (CeO2) has been proposed as one of the inert matrices for the transmutation of minor actinides in the futuristic inert matrix fuel (IMF) concept. The inert matrix should also contain burnable poison to compensate for the initial reactivity of fuel. In this context, gadolinium (Gd) is an excellent burnable poison with a high neutron absorption cross-section. In view of this, Gd2O3-CeO2 nano-powders were synthesized and sintered at 800 °C and 1300 °C to obtain different grain sizes and morphologies. FESEM and TEM were carried out to study the grain size of pristine pellets. The sintered pellets were irradiated with 80-MeV Ag ions (electronic energy loss (Se) regime) at room temperature to emulate the effect of fission fragments. For analysis of the effect of grain size on the irradiation-induced structural degradation at different fluences, GIXRD and Raman spectroscopy were performed. Significantly large damage has been observed for the smaller grain-sized samples (sintered at 800 °C) as compared to the large grain-sized sample (sintered at 1300 °C). Neither of the samples amorphized under the present experimental conditions as indicated by the presence of the Raman-active T2g mode (centred at 462 cm-1) and all the XRD peaks of fluorite cubic structure up to the highest fluence employed (1 × 1014 ions cm-2). X-ray photoelectron spectroscopy results demonstrate that Ce4+ to Ce3+ and vacancy-related isolated clusters are the main defects produced in the systems. The radiation tolerance behaviour of the samples is understood with the help of thermal spike simulation, which indicates higher transient lattice temperatures with longer duration in the smaller grain-sized sample upon irradiation. Gd-doped ceria thus possesses good radiation stability in the Se regime, indicating its potential for application in IMFs.

5.
Appl Opt ; 63(1): 104-111, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175006

RESUMO

In recent years, there has been a growing interest in the wideband propagation and control of terahertz (THz) radiation due to its potential for a variety of applications, such as 6G communication, sensing, and imaging. One promising approach in this area is the use of valley photonic crystals (VPCs), which exhibit properties like wider band gaps and robust propagation. In this paper, a two-dimensional dielectric silicon-air VPC is studied, which is constructed from a method of inversion symmetry breaking providing a band gap of 109.4 GHz at a mid-gap frequency of 0.376 THz. We employ an optimized bearded-stack interface to construct the VPC waveguide for wideband THz propagation along straight and Z-shaped paths. We demonstrate that a band-stop response can be achieved in a VPC by introducing periodic defects along the domain wall. Furthermore, the stop range can be tuned by varying the refractive index of the defects through incorporating liquid crystal along the domain wall of VPC. Our proposed structure and the techniques employed could be promising for the development of a band-stop filter (BSF) and other photonic components having potential applications in 6G communication and beyond.

6.
Semin Cancer Biol ; 80: 237-255, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32470379

RESUMO

The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Células Estromais/metabolismo , Microambiente Tumoral
7.
Nanotechnology ; 34(12)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36595332

RESUMO

Two dimensional (2D) van der Waals heterostructures (vdWHs) have unique potential in facilitating the stacking of layers of different 2D materials for optoelectronic devices with superior characteristics. However, the fabrication of large area all-2D heterostructures is still challenging towards realizing practical devices at a reduced cost. In the present work, we have demonstrated a rapid yet simple, impurity-free and efficient sonication-assisted chemical exfoliation approach to synthesize hybrid vdWHs based on 2D molybdenum disulphide (MoS2) and tungsten disulphide (WS2), with high yield. Microscopic and spectroscopic studies have confirmed the successful exfoliation of layered 2D materials and formation of their hybrid heterostructures. The co-existence of 2D MoS2and WS2in the vdWH hybrids is established by optical absorption and Raman shift measurements along with their chemical stiochiometry determined by x-ray photoelectron spectroscopy. The spectral response of the vdWH/Si (2D/3D) heterojunction photodetector fabricated using the as-synthesized material is found to exhibit broadband photoresponse compared to that of the individual 2D MoS2and WS2devices. The peak responsivity and detectivity are found to be as high as ∼2.15 A W-1and 2.05 × 1011Jones, respectively for an applied bias of -5 V. The ease of fabrication with appreciable performance of the chemically synthesized vdWH-based devices have revealed their potential use for large area optoelectronic applications on Si-compatible CMOS platforms.

8.
Br J Cancer ; 126(8): 1205-1214, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34837075

RESUMO

BACKGROUND: Aberrant activation of androgen receptor signalling following castration therapy is a common clinical observation in prostate cancer (PCa). Earlier, we demonstrated the role of MYB overexpression in androgen-depletion resistance and PCa aggressiveness. Here, we investigated MYB-androgen receptor (AR) crosstalk and its functional significance. METHODS: Interaction and co-localization of MYB and AR were examined by co-immunoprecipitation and immunofluorescence analyses, respectively. Protein levels were measured by immunoblot analysis and enzyme-linked immunosorbent assay. The role of MYB in ligand-independent AR transcriptional activity and combinatorial gene regulation was studied by promoter-reporter and chromatin immunoprecipitation assays. The functional significance of MYB in castration resistance was determined using an orthotopic mouse model. RESULTS: MYB and AR interact and co-localize in the PCa cells. MYB-overexpressing PCa cells retain AR in the nucleus even when cultured under androgen-deprived conditions. AR transcriptional activity is also sustained in MYB-overexpressing cells in the absence of androgens. MYB binds and promotes AR occupancy to the KLK3 promoter. MYB-overexpressing PCa cells exhibit greater tumorigenicity when implanted orthotopically and quickly regain growth following castration leading to shorter mice survival, compared to those carrying low-MYB-expressing prostate tumours. CONCLUSIONS: Our findings reveal a novel MYB-AR crosstalk in PCa and establish its role in castration resistance.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteínas Proto-Oncogênicas c-myb , Receptores Androgênicos , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Masculino , Camundongos , Orquiectomia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-myb/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
9.
Sensors (Basel) ; 22(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298223

RESUMO

This paper investigated the utility of drone-based environmental monitoring to assist with forest inventory in Queensland private native forests (PNF). The research aimed to build capabilities to carry out forest inventory more efficiently without the need to rely on laborious field assessments. The use of drone-derived images and the subsequent application of digital photogrammetry to obtain information about PNFs are underinvestigated in southeast Queensland vegetation types. In this study, we used image processing to separate individual trees and digital photogrammetry to derive a canopy height model (CHM). The study was supported with tree height data collected in the field for one site. The paper addressed the research question "How well do drone-derived point clouds estimate the height of trees in PNF ecosystems?" The study indicated that a drone with a basic RGB camera can estimate tree height with good confidence. The results can potentially be applied across multiple land tenures and similar forest types. This informs the development of drone-based and remote-sensing image-processing methods, which will lead to improved forest inventories, thereby providing forest managers with recent, accurate, and efficient information on forest resources.


Assuntos
Ecossistema , Dispositivos Aéreos não Tripulados , Florestas , Árvores , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto/métodos
10.
J Biol Chem ; 295(25): 8413-8424, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358063

RESUMO

Pancreatic cancer (PC) remains a therapeutic challenge because of its intrinsic and extrinsic chemoresistance mechanisms. Here, we report that C-X-C motif chemokine receptor 4 (CXCR4) and hedgehog pathways cooperate in PC chemoresistance via bidirectional tumor-stromal crosstalk. We show that when PC cells are co-cultured with pancreatic stellate cells (PSCs) they are significantly more resistant to gemcitabine toxicity than those grown in monoculture. We also demonstrate that this co-culture-induced chemoresistance is abrogated by inhibition of the CXCR4 and hedgehog pathways. Similarly, the co-culture-induced altered expression of genes in PC cells associated with gemcitabine metabolism, antioxidant defense, and cancer stemness is also reversed upon CXCR4 and hedgehog inhibition. We have confirmed the functional impact of these genetic alterations by measuring gemcitabine metabolites, reactive oxygen species production, and sphere formation in vehicle- or gemcitabine-treated monocultures and co-cultured PC cells. Treatment of orthotopic pancreatic tumor-bearing mice with gemcitabine alone or in combination with a CXCR4 antagonist (AMD3100) or hedgehog inhibitor (GDC-0449) displays reduced tumor growth. Notably, we show that the triple combination treatment is the most effective, resulting in nearly complete suppression of tumor growth. Immunohistochemical analysis of Ki67 and cleaved caspase-3 confirm these findings from in vivo imaging and tumor measurements. Our findings provide preclinical and mechanistic evidence that a combination of gemcitabine treatment with targeted inhibition of both the CXCR4 and hedgehog pathways improves outcomes in a PC mouse model.


Assuntos
Proteínas Hedgehog/metabolismo , Receptores CXCR4/metabolismo , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Benzilaminas , Comunicação Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Ciclamos , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Hedgehog/antagonistas & inibidores , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/citologia , Células Estreladas do Pâncreas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Gencitabina
11.
Adv Exp Med Biol ; 1330: 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339027

RESUMO

Ovarian cancer (OC) is the most lethal gynecological malignancy among women worldwide. In most cases, it is diagnosed late at an advanced stage and does not respond well to existing therapies leading to its poor prognosis. In addition, other factors including epidemiological, complex histological diversity, multiple molecular alterations, and overlapping signaling pathways are also important contributors to poor disease outcome. Efforts have continued to develop a deeper understanding of the molecular pathogenesis and altered signaling nodes that provide hope for better clinical management through the development of novel approaches for early diagnosis, disease subtyping, prognosis, and therapy. In this chapter, we provide a detailed overview of OC and its histological subtypes and discuss prevalent molecular aberrations and active signaling pathways that drive OC progression. We also summarize various diagnostic and prognostic markers and therapeutic approaches currently being employed and discuss emerging findings that hold the potential to change the future course of OC management.


Assuntos
Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Feminino , Humanos , Metástase Linfática , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Transdução de Sinais
12.
J Proteome Res ; 19(2): 794-804, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31928012

RESUMO

Earlier we have shown important roles of MYB in pancreatic tumor pathobiology. To better understand the role of MYB in the tumor microenvironment and identify MYB-associated secreted biomarker proteins, we conducted mass spectrometry analysis of the secretome from MYB-modulated and control pancreatic cancer cell lines. We also performed in silico analyses to determine MYB-associated biofunctions, gene networks, and altered biological pathways. Our data demonstrated significant modulation (p < 0.05) of 337 secreted proteins in MYB-silenced MiaPaCa cells, whereas 282 proteins were differentially present in MYB-overexpressing BxPC3 cells, compared to their respective control cells. Alteration of several phenotypes such as cellular movement, cell death and survival, inflammatory response, protein synthesis, etc. was associated with MYB-induced differentially expressed proteins (DEPs) in secretomes. DEPs from MYB-silenced MiaPaCa PC cells were suggestive of the downregulation of genes primarily associated with glucose metabolism, PI3K/AKT signaling, and oxidative stress response, among others. DEPs from MYB-overexpressing BxPC3 cells suggested the enhanced release of proteins associated with glucose metabolism and cellular motility. We also observed that MYB positively regulated the expression of four proteins with potential biomarker properties, i.e., FLNB, ENO1, ITGB1, and INHBA. Mining of publicly available databases using Oncomine and UALCAN demonstrated that these genes are overexpressed in pancreatic tumors and associated with reduced patient survival. Altogether, these data provide novel avenues for future investigations on diverse biological functions of MYB, specifically in the tumor microenvironment, and could also be exploited for biomarker development.


Assuntos
Neoplasias Pancreáticas , Proteômica , Biomarcadores , Biomarcadores Tumorais/genética , Humanos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Microambiente Tumoral
13.
Carcinogenesis ; 38(8): 757-765, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430867

RESUMO

Although increased awareness leading to early detection and prevention, as well as advancements in treatment strategies, have resulted in superior clinical outcomes, African American women with breast cancer continue to have greater mortality rates, compared to Caucasian American counterparts. Moreover, African American women are more likely to have breast cancer at a younger age and be diagnosed with aggressive tumor sub-types. Such racial disparities can be attributed to socioeconomic differences, but it is increasingly being recognized that these disparities may indeed be due to certain genetic and other non-genetic biological differences. Tumor microenvironment, which provides a favorable niche for the growth of tumor cells, is comprised of several types of stromal cells and the various proteins secreted as a consequence of bi-directional tumor-stromal cross-talk. Emerging evidence suggests inherent biological differences in the tumor microenvironment of breast cancer patients from different racial backgrounds. Tumor microenvironment components, affected by the genetic make-up of the tumor cells as well as other non-tumor-associated factors, may also render patients more susceptible to the development of aggressive tumors and faster progression of disease resulting in early onset, thus adversely affecting patients' survival. This review provides an overview of breast cancer racial disparity and discusses the existence of race-associated differential tumor microenvironment and its underlying genetic and non-genetic causal factors. A better understanding of these aspects would help further research on effective cancer management and improved approaches for reducing the racial disparities gaps in breast cancer patients.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Microambiente Tumoral/genética , Negro ou Afro-Americano/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Grupos Raciais/genética , Fatores de Risco , Fatores Socioeconômicos , População Branca/genética
14.
J Biol Chem ; 291(31): 16263-70, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27246849

RESUMO

Extensive desmoplasia is a prominent pathological characteristic of pancreatic cancer (PC) that not only impacts tumor development, but therapeutic outcome as well. Recently, we demonstrated a novel role of MYB, an oncogenic transcription factor, in PC growth and metastasis. Here we studied its effect on pancreatic tumor histopathology and associated molecular and biological mechanisms. Tumor-xenografts derived from orthotopic-inoculation of MYB-overexpressing PC cells exhibited far-greater desmoplasia in histological analyses compared with those derived from MYB-silenced PC cells. These findings were further confirmed by immunostaining of tumor-xenograft sections with collagen-I, fibronectin (major extracellular-matrix proteins), and α-SMA (well-characterized marker of myofibroblasts or activated pancreatic stellate cells (PSCs)). Likewise, MYB-overexpressing PC cells provided significantly greater growth benefit to PSCs in a co-culture system as compared with the MYB-silenced cells. Interrogation of deep-sequencing data from MYB-overexpressing versus -silenced PC cells identified Sonic-hedgehog (SHH) and Adrenomedullin (ADM) as two differentially-expressed genes among others, which encode for secretory ligands involved in tumor-stromal cross-talk. In-silico analyses predicted putative MYB-binding sites in SHH and ADM promoters, which was later confirmed by chromatin-immunoprecipitation. A cooperative role of SHH and ADM in growth promotion of PSCs was confirmed in co-culture by using their specific-inhibitors and exogenous recombinant-proteins. Importantly, while SHH acted exclusively in a paracrine fashion on PSCs and influenced the growth of PC cells only indirectly, ADM could directly impact the growth of both PC cells and PSCs. In summary, we identified MYB as novel regulator of pancreatic tumor desmoplasia, which is suggestive of its diverse roles in PC pathobiology.


Assuntos
Adrenomedulina/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/biossíntese , Proteínas Oncogênicas v-myb/metabolismo , Neoplasias Pancreáticas/metabolismo , Comunicação Parácrina , Elementos de Resposta , Transcrição Gênica , Regulação para Cima , Adrenomedulina/genética , Animais , Linhagem Celular Tumoral , Proteínas Hedgehog/genética , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Proteínas Oncogênicas v-myb/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia
15.
Br J Cancer ; 116(5): 609-619, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28152544

RESUMO

BACKGROUND: Chemoresistance is a significant clinical problem in pancreatic cancer (PC) and underlying molecular mechanisms still remain to be completely understood. Here we report a novel exosome-mediated mechanism of drug-induced acquired chemoresistance in PC cells. METHODS: Differential ultracentrifugation was performed to isolate extracellular vesicles (EVs) based on their size from vehicle- or gemcitabine-treated PC cells. Extracellular vesicles size and subtypes were determined by dynamic light scattering and marker profiling, respectively. Gene expression was examined by qRT-PCR and/or immunoblot analyses, and direct targeting of DCK by miR-155 was confirmed by dual-luciferase 3'-UTR reporter assay. Flow cytometry was performed to examine the apoptosis indices and reactive oxygen species (ROS) levels in PC cells using specific dyes. Cell viability was determined using the WST-1 assay. RESULTS: Conditioned media (CM) from gemcitabine-treated PC cells (Gem-CM) provided significant chemoprotection to subsequent gemcitabine toxicity and most of the chemoresistance conferred by Gem-CM resulted from its EVs fraction. Sub-fractionation grouped EVs into distinct subtypes based on size distribution and marker profiles, and exosome (Gem-Exo) was the only sub-fraction that imparted chemoresistance. Gene expression analyses demonstrated upregulation of SOD2 and CAT (ROS-detoxifying genes), and downregulation of DCK (gemcitabine-metabolising gene) in Gem-Exo-treated cells. SOD/CAT upregulation resulted, at least in part, from exosome-mediated transfer of their transcripts and they suppressed basal and gemcitabine-induced ROS production, and partly promoted chemoresistance. DCK downregulation occurred through exosome-delivered miR-155 and either the functional suppression of miR-155 or restoration of DCK led to marked abrogation of Gem-Exo-mediated chemoresistance. CONCLUSIONS: Together, these findings establish a novel role of exosomes in mediating the acquired chemoresistance of PC.


Assuntos
Catalase/genética , Desoxicitidina Quinase/genética , Resistencia a Medicamentos Antineoplásicos , Exossomos/fisiologia , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Superóxido Dismutase/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Difusão Dinâmica da Luz , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Gencitabina
16.
Nutr Cancer ; 69(6): 932-942, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28718667

RESUMO

SCOPE: Hydroxytyrosol (HT), a polyphenol from olives, is a potential anticancer agent. This study was designed to evaluate the anticancer activity of HT against prostate cancer cells, and the mechanism thereof. METHODS AND RESULTS: Treatment of LNCaP and C4-2 prostate cancer cells with HT resulted in a dose-dependent inhibition of proliferation. This was in contrast to HT's ineffectiveness against normal prostate epithelial cells RWPE1 and PWLE2, suggesting cancer-cell-specific effect. HT induced G1/S cell cycle arrest, with inhibition of cyclins D1/E and cdk2/4 and induction of inhibitory p21/p27. HT also induced apoptosis, as confirmed by flow cytometry, caspase activation, PARP cleavage, and BAX/Bcl-2 ratio. It inhibited the phosphorylation of Akt/STAT3, and induced cytoplasmic retention of NF-κB, which may explain its observed effects. Finally, HT inhibited androgen receptor (AR) expression and the secretion of AR-responsive prostate-specific antigen. CONCLUSION: Castration-resistant prostate cancers retain AR signaling and are often marked by activated Akt, NF-κB, and STAT3 signaling. Our results establish a pleiotropic activity of HT against these oncogenic signaling pathways. Combined with its nontoxic effects against normal cells, our results support further testing of HT for prostate cancer therapy.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/antagonistas & inibidores , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina E/antagonistas & inibidores , Ciclina E/genética , Ciclina E/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Álcool Feniletílico/farmacologia , Fosforilação , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Phys Chem Chem Phys ; 19(36): 24886-24895, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28869273

RESUMO

Skutterudites are emerging as potential candidates that show high efficiency and thus provide an ideal platform for research. The properties of nanostructured films of skutterudites are different from those of the corresponding bulk. The present study reports the evolution of nanostructured single-phase CoSb3 fabricated by using low-energy ion irradiation of Co/Sb bilayer films and subsequent annealing at an optimized temperature and their Seebeck coefficients (S). The effects of ion beam parameters with annealing on the phase evolution and nanostructure modifications were studied. An increase in Xe+ ion fluence resulted in complete mixing of Co/Sb on postannealing forming flower-like nanostructures of single phase CoSb3. The temperature-dependent electrical resistivity (ρ) increases with the ion fluence because of defect creation which further increases on postannealing due to surface nanostructuring. The S of these films of CoSb3 is found to be higher and this is attributed to the formation of a uniform layer of nanostructured CoSb3 alloy thin film. The S and Hall coefficients of all these films are negative implying that they are n-type semiconductors.

18.
Carcinogenesis ; 37(11): 1052-1061, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27609457

RESUMO

The poor clinical outcome of pancreatic cancer (PC) is largely attributed to its aggressive nature and refractoriness to currently available therapeutic modalities. We previously reported antitumor efficacy of honokiol (HNK), a phytochemical isolated from various parts of Magnolia plant, against PC cells in short-term in vitro growth assays. Here, we report that HNK reduces plating efficiency and anchorage-independent growth of PC cells and suppresses their migration and invasiveness. Furthermore, significant inhibition of pancreatic tumor growth by HNK is observed in orthotopic mouse model along with complete-blockage of distant metastases. Histological examination suggests reduced desmoplasia in tumors from HNK-treated mice, later confirmed by immunohistochemical analyses of myofibroblast and extracellular matrix marker proteins (α-SMA and collagen I, respectively). At the molecular level, HNK treatment leads to decreased expression of sonic hedgehog (SHH) and CXCR4, two established mediators of bidirectional tumor-stromal cross-talk, both in vitro and in vivo . We also show that the conditioned media (CM) from HNK-treated PC cells have little growth-inducing effect on pancreatic stellate cells (PSCs) that could be regained by the addition of exogenous recombinant SHH. Moreover, pretreatment of CM of vehicle-treated PC cells with SHH-neutralizing antibody abolishes their growth-inducing potential on PSCs. Likewise, HNK-treated PC cells respond poorly to CM from PSCs due to decreased CXCR4 expression. Lastly, we show that the transfection of PC cells with constitutively active IKKß mutant reverses the suppressive effect of HNK on nuclear factor-kappaB activation and partially restores CXCR4 and SHH expression. Taken together, these findings suggest that HNK interferes with tumor-stromal cross-talk via downregulation of CXCR4 and SHH and decreases pancreatic tumor growth and metastasis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Comunicação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Lignanas/uso terapêutico , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Pulmonares/secundário , Camundongos , Neoplasias Pancreáticas/patologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Br J Cancer ; 113(12): 1694-703, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26657649

RESUMO

BACKGROUND: MYB encodes for a transcription factor regulating the expression of a wide array of genes involved in cellular functions. It is reported to be amplified in a sub-set of pancreatic cancer (PC) cases; however, its pathobiological association has remained unclear thus far. METHODS: Expression of MYB and other cellular proteins was analysed by immunoblot or qRT-PCR analyses. MYB was stably overexpressed in non-expressing (BxPC3) and silenced in highly expressing (MiaPaCa and Panc1) PC cells. Effect on growth was analysed by automated cell counting at 24-h interval. Cell-cycle progression and apoptotic indices of PC cells with altered MYB expression were measured through flow cytometry upon staining with respective biomarkers. Cell motility/invasion was examined in a Boyden's chamber assay using non-coated or Matrigel-coated membranes. Effect on tumorigenicity and metastatic potential was examined by non-invasive imaging and through end-point measurements of luciferase-tagged MYB-altered PC implanted in the pancreas of nude mice. RESULTS: MYB was aberrantly expressed in all malignant cases of pancreas, whereas remained undetectable in normal pancreas. All the tested established PC cell lines except BxPC3 also exhibited MYB expression. Forced expression of MYB in BxPC3 cells promoted their growth, cell-cycle progression, survival and malignant behaviour, whereas its silencing in MiaPaCa and Panc1 cells produced converse effects. More importantly, ectopic MYB expression was sufficient to confer tumorigenic and metastatic capabilities to non-tumorigenic BxPC3 cells, while its silencing resulted in significant loss of the same in MYB-overexpressing cells as demonstrated in orthotopic mouse model. We also identified several MYB-regulated genes in PC cells that might potentially mediate its effect on tumour growth and metastasis. CONCLUSIONS: MYB is aberrantly overexpressed in PC cells and acts as a key determinant of pancreatic tumour growth and metastasis.


Assuntos
Divisão Celular/genética , Genes myb , Metástase Neoplásica/genética , Neoplasias Pancreáticas/patologia , Animais , Ciclo Celular , Xenoenxertos , Humanos , Camundongos , Neoplasias Pancreáticas/genética
20.
Br J Cancer ; 113(4): 660-8, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26247574

RESUMO

BACKGROUND: Previously, miR-345 was identified as one of the most significantly downregulated microRNAs in pancreatic cancer (PC); however, its functional significance remained unexplored. METHODS: miR-345 was overexpressed in PC cells by stable transfection, and its effect on growth, apoptosis and mitochondrial-membrane potential was examined by WST-1, Hoechst-33342/Annexin-V, and JC-1 staining, respectively. Gene expression was examined by quantitative reverse-transcription-PCR and/or immunoblotting, and subcellular fractions prepared and caspase-3/7 activity determined by commercially available kits. miR-345 target validation was performed by mutational analysis and luciferase-reporter assay. RESULTS: miR-345 is significantly downregulated in PC tissues and cell lines relative to normal pancreatic cells, and its expression decreases gradually in PC progression model cell lines. Forced expression of miR-345 results in reduced growth of PC cells because of the induction of apoptosis, accompanied by a loss in mitochondrial membrane potential, cytochrome-c release, caspases-3/7 activation, and PARP-1 cleavage, as well as mitochondrial-to-nuclear translocation of apoptosis-inducing factor. These effects could be reversed by the treatment of miR-345-overexpressing PC cells with anti-miR-345 oligonucleotides. BCL2 was characterised as a novel target of miR-345 and its forced-expression abrogated the effects of miR-345 in PC cells. CONCLUSIONS: miR-345 downregulation confers apoptosis resistance to PC cells, and its restoration could be exploited for therapeutic benefit.


Assuntos
Apoptose/genética , Caspase 3/genética , Caspase 7/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Citocromos c/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA