Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 169(4): 736-749.e18, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475899

RESUMO

Immune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types.


Assuntos
Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Microambiente Tumoral , Humanos , Citometria por Imagem , Tolerância Imunológica , Rim/citologia , Macrófagos/imunologia , Macrófagos/patologia , Análise de Célula Única , Linfócitos T/imunologia , Linfócitos T/patologia
2.
Nature ; 520(7546): 248-252, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25807481

RESUMO

RNA interference (RNAi) refers to the ability of exogenously introduced double-stranded RNA to silence expression of homologous sequences. Silencing is initiated when the enzyme Dicer processes the double-stranded RNA into small interfering RNAs (siRNAs). Small RNA molecules are incorporated into Argonaute-protein-containing effector complexes, which they guide to complementary targets to mediate different types of gene silencing, specifically post-transcriptional gene silencing and chromatin-dependent gene silencing. Although endogenous small RNAs have crucial roles in chromatin-mediated processes across kingdoms, efforts to initiate chromatin modifications in trans by using siRNAs have been inherently difficult to achieve in all eukaryotic cells. Using fission yeast, here we show that RNAi-directed heterochromatin formation is negatively controlled by the highly conserved RNA polymerase-associated factor 1 complex (Paf1C). Temporary expression of a synthetic hairpin RNA in Paf1C mutants triggers stable heterochromatin formation at homologous loci, effectively silencing genes in trans. This repressed state is propagated across generations by the continual production of secondary siRNAs, independently of the synthetic hairpin RNA. Our data support a model in which Paf1C prevents targeting of nascent transcripts by the siRNA-containing RNA-induced transcriptional silencing complex and thereby epigenetic gene silencing, by promoting efficient transcription termination and rapid release of the RNA from the site of transcription. We show that although compromised transcription termination is sufficient to initiate the formation of bi-stable heterochromatin by trans-acting siRNAs, impairment of both transcription termination and nascent transcript release is imperative to confer stability to the repressed state. Our work uncovers a novel mechanism for small-RNA-mediated epigenome regulation and highlights fundamental roles for Paf1C and the RNAi machinery in building epigenetic memory.


Assuntos
Complexos Multiproteicos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Heterocromatina/genética , Heterocromatina/metabolismo
3.
Dev Cell ; 37(1): 98-104, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27046835

RESUMO

Samans et al. (2014) reported the enrichment of nucleosomes in human and bovine spermatozoa at centromere repeats and retrotransposon sequences such as LINE-1 and SINE. We demonstrate here that nucleosomal enrichments at repetitive sequences as reported result from bioinformatic analyses that make redundant use of sequencing reads that map to multiple locations in the genome. To illustrate that this computational approach is flawed, we observed comparable artificial enrichments at repetitive sequences when aligning control genomic DNA or simulated reads of uniform genome coverage. These results imply that the main conclusions of the article by Samans et al. (2014) are confounded by an inappropriate computational methodology used to analyze the primary data.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA/genética , Regulação da Expressão Gênica , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Espermatozoides/metabolismo , Animais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA