Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 24(10): 453-462, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403269

RESUMO

Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.


Assuntos
Células Epiteliais , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Células Epiteliais/metabolismo , Membrana Celular/metabolismo , Luciferases/genética , Luciferases/metabolismo , Polaridade Celular
2.
Soft Matter ; 19(7): 1363-1372, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723049

RESUMO

Alpha-Synuclein (ASN), a presynaptic protein, has been widely reported to form amyloid-rich hydrogel clusters through liquid-liquid phase separation (LLPS) and liquid-to-solid transition. However, in-depth investigations about the parameters that influence the assembling kinetics, structures, and physicochemical properties of intermediate ASN assemblies are still missing. Therefore, we monitored for the first time the assembling and ordering kinetics of ASN by polarized/depolarized light scattering (DLS/DDLS) under the effect of ionic strength and a pulsed electric field (EF), followed by characterizing the resultant ASN assemblies applying thermostability assays, fluorescence/autofluorescence assays, and TEM. The underlying molecular mechanism was discussed based on experimental evidence. Results showed that in the presence of 150-250 mM NaCl, monomeric ASN is highly soluble in a temperature range of 20-70 °C and could form dissoluble liquid dense clusters via LLPS in crowded environments, while the ionic strength of 50 mM NaCl could trigger conformational changes and attractive diffusion interactions of ASN monomers towards the formation of mesoscopic assemblies with ordered internal structures and high thermostabilities. We discovered that pulsed EFs and ionic strength can modulate effectively the thermostability and autofluorescence effect of mesoscopic ASN assemblies by tuning the molecular interaction and arrangement. Remarkably, a specie of thermostable ASN assemblies showing a maximum autofluorescence emission at approx. 700 nm was synthesized applying 250 mM NaCl and the distinct pulsed EF, which could be attributed to the increase of ß-sheet structures and hydrogen-bond networks within ASN assemblies. In summary, the presented data provide novel insights for modulating the growth kinetics, structures, and physicochemical properties of bio-macromolecular mesoscopic assemblies.


Assuntos
Cloreto de Sódio , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Cinética , Cloreto de Sódio/química , Fenômenos Químicos
3.
Mol Microbiol ; 112(5): 1519-1530, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444817

RESUMO

Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L-type or R-type, having slightly different conformations and inter-protofilaments interactions. By mixing different ratios of L-type and R-type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site-directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non-motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right-handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine's model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.


Assuntos
Flagelos/metabolismo , Flagelina/química , Salmonella typhimurium/fisiologia , Flagelina/genética , Ligação de Hidrogênio , Locomoção/genética , Locomoção/fisiologia
4.
Bioinformatics ; 35(13): 2340-2342, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30475993

RESUMO

MOTIVATION: Giant Unilamellar Vesicles (GUVs) are widely used synthetic membrane systems that mimic native membranes and cellular processes. Various fluorescence imaging techniques can be employed for their characterization. In order to guarantee a fast and unbiased analysis of imaging data, the development of automated recognition and processing steps is required. RESULTS: We developed a fast and versatile Fiji-based macro for the analysis of digital microscopy images of GUVs. This macro was designed to investigate membrane dye incorporation and protein binding to membranes. Moreover, we propose a fluorescence intensity-based method to quantitatively assess protein binding. AVAILABILITY AND IMPLEMENTATION: The ImageJ distribution package FIJI is freely available online: https://imagej.net/Fiji. The macro file GUV-AP.ijm is available at https://github.com/AG-Roemer/GUV-AP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Lipossomas Unilamelares
5.
Cytometry A ; 97(9): 882-886, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583531

RESUMO

Operating shared resource laboratories (SRLs) in times of pandemic is a challenge for research institutions. In a multiuser, high-turnover working space, the transmission of infectious agents is difficult to control. To address this challenge, imaging core facility managers being members of German BioImaging discussed how shared microscopes could be operated with minimal risk of spreading SARS-CoV-2 between users and staff. Here, we describe the resulting guidelines and explain their rationale, with a focus on separating users in space and time, protective face masks, and keeping surfaces virus-free. These recommendations may prove useful for other types of SRLs. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Betacoronavirus/patogenicidade , Pesquisa Biomédica/organização & administração , Infecções por Coronavirus/prevenção & controle , Controle de Infecções , Laboratórios/organização & administração , Microscopia , Saúde Ocupacional , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , COVID-19 , Comportamento Cooperativo , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Descontaminação , Contaminação de Equipamentos/prevenção & controle , Alemanha , Humanos , Exposição Ocupacional/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Fatores de Proteção , Pesquisadores/organização & administração , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Fluxo de Trabalho
6.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1236-1245, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28428058

RESUMO

The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkIIY221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to CrkY221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkIIY221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes.


Assuntos
Adesinas Bacterianas/metabolismo , Globosídeos/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Pseudomonas aeruginosa/patogenicidade , Transdução de Sinais , Triexosilceramidas/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Quinases da Família src/metabolismo
7.
Biochim Biophys Acta ; 1860(2): 392-401, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26546712

RESUMO

BACKGROUND: Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a lectin from the fairy ring mushroom with specificity for Galα1-3Gal containing carbohydrates. This lectin is composed of an N-terminal carbohydrate-binding domain and a C-terminal dimerization domain. The dimerization domain of MOA shows in addition calcium-dependent cysteine protease activity, similar to the calpain family. METHODS: Cell detachment assay, cell viability assay, immunofluorescence, live cell imaging and Western blot using MDCKII cell line. RESULTS: In this study, we demonstrate in MDCKII cells that after internalization, MOA protease activity induces profound physiological cellular responses, like cytoskeleton rearrangement, cell detachment and cell death. These changes are preceded by a decrease in FAK phosphorylation and an internalization and degradation of ß1-integrin, consistent with a disruption of integrin-dependent cell adhesion signaling. Once internalized, MOA accumulates in late endosomal compartments. CONCLUSION: Our results suggest a possible toxic mechanism of MOA, which consists of disturbing the cell adhesion and the cell viability. GENERAL SIGNIFICANCE: After being ingested by a predator, MOA might exert a protective role by diminishing host cell integrity.


Assuntos
Aglutininas/fisiologia , Integrina beta1/fisiologia , Marasmius/química , Animais , Adesão Celular , Células Cultivadas , Clatrina/fisiologia , Cães , Dinaminas/fisiologia , Endocitose , Endossomos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/fisiologia
8.
Biochim Biophys Acta ; 1863(6 Pt A): 1106-18, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26862060

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of ß-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the ß-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce ß-catenin degradation, which then represses processes that are directly linked to tissue recovery.


Assuntos
Proteínas de Bactérias/farmacologia , Células Epiteliais/efeitos dos fármacos , Lectinas/farmacologia , beta Catenina/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Proteínas de Bactérias/genética , Western Blotting , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Integrina beta1/metabolismo , Lectinas/genética , Microscopia Confocal , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Fator de Transcrição RelA/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 111(11): 4127-32, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591614

RESUMO

Emerging data suggest that in polarized epithelial cells newly synthesized apical and basolateral plasma membrane proteins traffic through different endosomal compartments en route to the respective cell surface. However, direct evidence for trans-endosomal pathways of plasma membrane proteins is still missing and the mechanisms involved are poorly understood. Here, we imaged the entire biosynthetic route of rhodopsin-GFP, an apical marker in epithelial cells, synchronized through recombinant conditional aggregation domains, in live Madin-Darby canine kidney cells using spinning disk confocal microscopy. Our experiments directly demonstrate that rhodopsin-GFP traffics through apical recycling endosomes (AREs) that bear the small GTPase Rab11a before arriving at the apical membrane. Expression of dominant-negative Rab11a drastically reduced apical delivery of rhodopsin-GFP and caused its missorting to the basolateral membrane. Surprisingly, functional inhibition of dynamin-2 trapped rhodopsin-GFP at AREs and caused aberrant accumulation of coated vesicles on AREs, suggesting a previously unrecognized role for dynamin-2 in the scission of apical carrier vesicles from AREs. A second set of experiments, using a unique method to carry out total internal reflection fluorescence microscopy (TIRFM) from the apical side, allowed us to visualize the fusion of rhodopsin-GFP carrier vesicles, which occurred randomly all over the apical plasma membrane. Furthermore, two-color TIRFM showed that Rab11a-mCherry was present in rhodopsin-GFP carrier vesicles and was rapidly released upon fusion onset. Our results provide direct evidence for a role of AREs as a post-Golgi sorting hub in the biosynthetic route of polarized epithelia, with Rab11a regulating cargo sorting at AREs and carrier vesicle docking at the apical membrane.


Assuntos
Vias Biossintéticas/fisiologia , Polaridade Celular/fisiologia , Células Epiteliais/citologia , Rodopsina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Primers do DNA/genética , Cães , Complexo de Golgi/metabolismo , Immunoblotting , Imuno-Histoquímica , Células Madin Darby de Rim Canino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Plasmídeos/genética , Transporte Proteico/fisiologia , Rodopsina/biossíntese , Vesículas Transportadoras/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(35): 12895-900, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136128

RESUMO

Glycosphingolipids are important structural constituents of cellular membranes. They are involved in the formation of nanodomains ("lipid rafts"), which serve as important signaling platforms. Invasive bacterial pathogens exploit these signaling domains to trigger actin polymerization for the bending of the plasma membrane and the engulfment of the bacterium--a key process in bacterial uptake. However, it is unknown whether glycosphingolipids directly take part in the membrane invagination process. Here, we demonstrate that a "lipid zipper," which is formed by the interaction between the bacterial surface lectin LecA and its cellular receptor, the glycosphingolipid Gb3, triggers plasma membrane bending during host cell invasion of the bacterium Pseudomonas aeruginosa. In vitro experiments with Gb3-containing giant unilamellar vesicles revealed that LecA/Gb3-mediated lipid zippering was sufficient to achieve complete membrane engulfment of the bacterium. In addition, theoretical modeling elucidated that the adhesion energy of the LecA-Gb3 interaction is adequate to drive the engulfment process. In cellulo experiments demonstrated that inhibition of the LecA/Gb3 lipid zipper by either lecA knockout, Gb3 depletion, or application of soluble sugars that interfere with LecA binding to Gb3 significantly lowered P. aeruginosa uptake by host cells. Of note, membrane engulfment of P. aeruginosa occurred independently of actin polymerization, thus corroborating that lipid zippering alone is sufficient for this crucial first step of bacterial host-cell entry. Our study sheds new light on the impact of glycosphingolipids in the cellular invasion of bacterial pathogens and provides a mechanistic explication of the initial uptake processes.


Assuntos
Actinas/metabolismo , Glicoesfingolipídeos/metabolismo , Microdomínios da Membrana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glicolipídeos/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(10): 3820-5, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22343291

RESUMO

The coxsackie and adenovirus receptor (CAR) plays key roles in epithelial barrier function at the tight junction, a localization guided in part by a tyrosine-based basolateral sorting signal, (318)YNQV(321). Sorting motifs of this type are known to route surface receptors into clathrin-mediated endocytosis through interaction with the medium subunit (µ2) of the clathrin adaptor AP-2, but how they guide new and recycling membrane proteins basolaterally is unknown. Here, we show that YNQV functions as a canonical YxxΦ motif, with both Y318 and V321 required for the correct basolateral localization and biosynthetic sorting of CAR, and for interaction with a highly conserved pocket in the medium subunits (µ1A and µ1B) of the clathrin adaptors AP-1A and AP-1B. Knock-down experiments demonstrate that AP-1A plays a role in the biosynthetic sorting of CAR, complementary to the role of AP-1B in basolateral recycling of this receptor. Our study illustrates how two clathrin adaptors direct basolateral trafficking of a plasma membrane protein through interaction with a canonical YxxΦ motif.


Assuntos
Complexo 1 de Proteínas Adaptadoras/química , Receptores Virais/química , Complexo 2 de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Clatrina/química , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cães , Endocitose , Endossomos/metabolismo , Células Epiteliais/citologia , Exocitose , Peixes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mutação , Conformação Proteica , Transporte Proteico , Ranidae
12.
Analyst ; 139(13): 3206-18, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24668405

RESUMO

In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Transporte Biológico , Técnicas de Cultura de Células/instrumentação , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia/instrumentação , Microscopia/métodos
13.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959130

RESUMO

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.


Assuntos
SARS-CoV-2 , Titânio , Raios Ultravioleta , Titânio/química , Titânio/efeitos da radiação , SARS-CoV-2/efeitos da radiação , SARS-CoV-2/química , Inativação de Vírus/efeitos da radiação , Inativação de Vírus/efeitos dos fármacos , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/prevenção & controle , Adsorção , Propriedades de Superfície
14.
Pharmaceutics ; 15(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678854

RESUMO

Receptor-mediated transcytosis is an elegant and promising strategy for drug delivery across biological barriers. Here, we describe a novel ligand-receptor pair based on a dimeric, engineered derivative of the Pseudomonas aeruginosa lectin LecA, here termed Di-LecA, and the host cell glycosphingolipid Gb3. We characterized the trafficking kinetics and transcytosis efficiencies in polarized Gb3-positive and -negative MDCK cells using mainly immunofluorescence in combination with confocal microscopy. To evaluate the delivery capacity of dimeric LecA chimeras, EGFP was chosen as a fluorescent model protein representing macromolecules, such as antibody fragments, and fused to either the N- or C-terminus of monomeric LecA using recombinant DNA technology. Both LecA/EGFP fusion proteins crossed cellular monolayers in vitro. Of note, the conjugate with EGFP at the N-terminus of LecA (EGFP-LecA) showed a higher release rate than the conjugate with EGFP at the C-terminus (LecA-EGFP). Based on molecular dynamics simulations and cross-linking studies of giant unilamellar vesicles, we speculate that EGFP-LecA tends to be a dimer while LecA-EGFP forms a tetramer. Overall, we confidently propose the dimeric LecA chimeras as transcytotic drug delivery tools through Gb3-positive cellular barriers for future in vivo tests.

15.
Sci Adv ; 9(49): eadj5777, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064550

RESUMO

Secreted bacterial type III secretion system (T3SS) proteins are essential for successful infection by many human pathogens. Both T3SS translocator SipC and effector SipA are critical for Salmonella infection by subversion of the host cell cytoskeleton, but the precise molecular interplay between them remains unknown. Here, using cryo-electron microscopy, we show that SipA binds along the F-actin grooves with a unique binding pattern. SipA stabilizes F-actin through charged interface residues and appears to prevent inorganic phosphate release through closure of the "back door" of adenosine 5'-triphosphate pocket. We also show that SipC enhances the binding of SipA to F-actin, thus demonstrating that a sequential presence of T3SS proteins in host cells is associated with a sequence of infection events-starting with actin nucleation, filament growth, and stabilization. Together, our data explain the coordinated interplay of a precisely tuned and highly effective mechanism during Salmonella infection and provide a blueprint for interfering with Salmonella effectors acting on actin.


Assuntos
Actinas , Infecções por Salmonella , Humanos , Actinas/metabolismo , Microscopia Crioeletrônica , Proteínas de Bactérias/metabolismo , Citoesqueleto de Actina/metabolismo
16.
ACS Appl Mater Interfaces ; 15(6): 8770-8782, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723177

RESUMO

We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO2(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO2(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO2 under thermal and UV treatments. The interaction of the virus with the surface of TiO2 was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO2(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO2(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO2(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.


Assuntos
COVID-19 , SARS-CoV-2 , Adsorção , Proteínas , Glicoproteína da Espícula de Coronavírus , Titânio/química
17.
Science ; 381(6662): eabq5202, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676943

RESUMO

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Assuntos
Infecções Transmitidas por Sangue , Células Gigantes , Células de Kupffer , Cirrose Hepática , Animais , Humanos , Camundongos , Células Gigantes/imunologia , Células Gigantes/microbiologia , Células de Kupffer/imunologia , Células de Kupffer/microbiologia , Cirrose Hepática/imunologia , Cirrose Hepática/microbiologia , Cirrose Hepática/patologia , Infecções Transmitidas por Sangue/imunologia , Modelos Animais de Doenças
18.
mBio ; 13(3): e0081922, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35491830

RESUMO

The opportunistic bacterium Pseudomonas aeruginosa can infect mucosal tissues of the human body. To persist at the mucosal barrier, this highly adaptable pathogen has evolved many strategies, including invasion of host cells. Here, we show that the P. aeruginosa lectin LecB binds and cross-links fucosylated receptors at the apical plasma membrane of epithelial cells. This triggers a signaling cascade via Src kinases and phosphoinositide 3-kinase (PI3K), leading to the formation of patches enriched with the basolateral marker phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the apical plasma membrane. This identifies LecB as a causative bacterial factor for activating this well-known host cell response that is elicited upon apical binding of P. aeruginosa. Downstream from PI3K, Rac1 is activated to cause actin rearrangement and the outgrowth of protrusions at the apical plasma membrane. LecB-triggered PI3K activation also results in aberrant recruitment of caveolin-1 to the apical domain. In addition, we reveal a positive feedback loop between PI3K activation and apical caveolin-1 recruitment, which provides a mechanistic explanation for the previously observed implication of caveolin-1 in P. aeruginosa host cell invasion. Interestingly, LecB treatment also reversibly removes primary cilia. To directly prove the role of LecB for bacterial uptake, we coated bacterium-sized beads with LecB, which drastically enhanced their endocytosis. Furthermore, LecB deletion and LecB inhibition with l-fucose diminished the invasion efficiency of P. aeruginosa bacteria. Taken together, the results of our study identify LecB as a missing link that can explain how PI3K signaling and caveolin-1 recruitment are triggered to facilitate invasion of epithelial cells from the apical side by P. aeruginosa. IMPORTANCE An intriguing feature of the bacterium P. aeruginosa is its ability to colonize highly diverse niches. P. aeruginosa can, besides forming biofilms, also enter and proliferate within epithelial host cells. Moreover, research during recent years has shown that P. aeruginosa possesses many different mechanisms to invade host cells. In this study, we identify LecB as a novel invasion factor. In particular, we show that LecB activates PI3K signaling, which is connected via a positive feedback loop to apical caveolin-1 recruitment and leads to actin rearrangement at the apical plasma membrane. This provides a unifying explanation for the previously reported implication of PI3K and caveolin-1 in host cell invasion by P. aeruginosa. In addition, our study adds a further function to the remarkable repertoire of the lectin LecB, which is all brought about by the capability of LecB to recognize fucosylated glycans on many different niche-specific host cell receptors.


Assuntos
Lectinas , Pseudomonas aeruginosa , Actinas/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Humanos , Lectinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pseudomonas aeruginosa/metabolismo
19.
Viruses ; 14(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35891503

RESUMO

Nipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection. We observed that these structures are formed specifically during NiV infection, but not with other viruses from the same Mononegavirales order (namely Ebola virus) or from other orders such as Bunyavirales (Junín virus). We also determined the kinetics of the appearance of these structures and their cellular localization at the cellular periphery. Finally, we confirmed the presence of these NiV-specific ordered structures using structured illumination microscopy (SIM), as well as their localization by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and correlative light and electron microscopy (CLEM). Herein, we describe a cytopathogenic mechanism that provides a new insight into NiV biology. These newly described ordered structures could provide a target for novel antiviral approaches.


Assuntos
Ebolavirus , Infecções por Henipavirus , Vírus Nipah , Paramyxovirinae , Antivirais , Humanos , Vírus Nipah/fisiologia
20.
Nat Commun ; 12(1): 2889, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001871

RESUMO

During clathrin-mediated endocytosis, a complex and dynamic network of protein-membrane interactions cooperate to achieve membrane invagination. Throughout this process in yeast, endocytic coat adaptors, Sla2 and Ent1, must remain attached to the plasma membrane to transmit force from the actin cytoskeleton required for successful membrane invagination. Here, we present a cryo-EM structure of a 16-mer complex of the ANTH and ENTH membrane-binding domains from Sla2 and Ent1 bound to PIP2 that constitutes the anchor to the plasma membrane. Detailed in vitro and in vivo mutagenesis of the complex interfaces delineate the key interactions for complex formation and deficient cell growth phenotypes demonstrate its biological relevance. A hetero-tetrameric unit binds PIP2 molecules at the ANTH-ENTH interfaces and can form larger assemblies to contribute to membrane remodeling. Finally, a time-resolved small-angle X-ray scattering study of the interaction of these adaptor domains in vitro suggests that ANTH and ENTH domains have evolved to achieve a fast subsecond timescale assembly in the presence of PIP2 and do not require further proteins to form a stable complex. Together, these findings provide a molecular understanding of an essential piece in the molecular puzzle of clathrin-coated endocytic sites.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clatrina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/ultraestrutura , Sítios de Ligação/genética , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Endocitose/genética , Modelos Moleculares , Multimerização Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA