Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7906): 571-577, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418676

RESUMO

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.


Assuntos
Cromossomos , Elementos Facilitadores Genéticos , Animais , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Genômica , Mamíferos/genética , Regiões Promotoras Genéticas/genética
2.
J Am Chem Soc ; 144(41): 18861-18875, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200994

RESUMO

We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group ("aza-scan") into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.


Assuntos
Inibidores de Histona Desacetilases , Isoenzimas , Humanos , Vorinostat , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Células HeLa , Histona Desacetilases/química , Poliaminas/farmacologia , Zinco , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química
3.
Nucleic Acids Res ; 44(3): e28, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26429970

RESUMO

The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.


Assuntos
DNA/química , Uracila/análise , Catálise , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro
4.
Physiol Rep ; 10(1): e15159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001557

RESUMO

ATP has been previously identified as an autocrine signaling factor that is co-released with insulin to modulate and propagate ß-cell activity within islets of Langerhans. Here, we show that ß-cell activity and insulin secretion essentially rely on the presence of extracellular ATP. For this, we monitored changes of the intracellular Ca2+ concentration ([Ca2+ ]i oscillations) as an immediate read-out for insulin secretion in live cell experiments. Extensive washing of cells or depletion of extracellular ATP levels by recombinant apyrase reduced [Ca2+ ]i oscillations and insulin secretion in pancreatic cell lines and primary ß-cells. Following ATP depletion, [Ca2+ ]i oscillations were stimulated by the replenishment of ATP in a concentration-dependent manner. Inhibition of endogenous ecto-ATP nucleotidases increased extracellular ATP levels, along with [Ca2+ ]i oscillations and insulin secretion, indicating that there is a constant supply of ATP to the extracellular space. Our combined results demonstrate that extracellular ATP is essential for ß-cell activity. The presented work suggests extracellular ATPases as potential drug targets for the modulation of insulin release. We further found that exogenous fatty acids compensated for depleted extracellular ATP levels by the recovery of [Ca2+ ]i oscillations, indicating that autocrine factors mutually compensate for the loss of others. Thereby, our results contribute to a more detailed and complete understanding of the general role of autocrine signaling factors as a fundamental regulatory mechanism of ß-cell activity and insulin secretion.


Assuntos
Ilhotas Pancreáticas , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais
5.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32956035

RESUMO

Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.


Assuntos
Antineoplásicos/farmacologia , DNA , Genoma , Uracila , DNA/análise , DNA/biossíntese , DNA/química , DNA/genética , Genoma/efeitos dos fármacos , Genoma/genética , Genômica , Células HCT116 , Humanos , Microscopia , Análise de Sequência de DNA , Uracila/análise , Uracila/biossíntese , Uracila/química
6.
Biomolecules ; 9(4)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987342

RESUMO

Sanitization of nucleotide pools is essential for genome maintenance. Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is a key enzyme in this pathway since it catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate. Through its action dUTPase efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis. Despite its physiological significance, knock-out models of dUTPase have not yet been investigated in mammals, but only in unicellular organisms, such as bacteria and yeast. Here we generate CRISPR/Cas9-mediated dUTPase knock-out in mice. We find that heterozygous dut +/- animals are viable while having decreased dUTPase levels. Importantly, we show that dUTPase is essential for embryonic development since early dut -/- embryos reach the blastocyst stage, however, they die shortly after implantation. Analysis of pre-implantation embryos indicates perturbed growth of both inner cell mass (ICM) and trophectoderm (TE). We conclude that dUTPase is indispensable for post-implantation development in mice.


Assuntos
Desenvolvimento Embrionário/genética , Deleção de Genes , Pirofosfatases/genética , Animais , Blastocisto/metabolismo , Blastocisto/patologia , Sistemas CRISPR-Cas , Células Cultivadas , Heterozigoto , Homozigoto , Camundongos , Camundongos Knockout , Pirofosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA