Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Theor Biol ; 522: 110684, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794287

RESUMO

Hepatocyte insulin resistance is one of the early factors of developing type II diabetes. If insulin resistance is treated early, type II diabetes could be prevented. In recent years, scientists have been conducting extensive research on the underlying issues on a cellular and molecular level. It was found that the modulation of IP3-receptors, the mitochondrial ability to form the mitochondria-associated membranes (MAMs) and the endoplasmic reticulum stress during Ca2+ signaling play a key role in hepatocyte being able to maintain euglycemia and provide metabolic flexibility. However, researchers cannot agree on what factor is the key one in resulting in insulin resistance. In this work, we propose a mathematical model of Ca2+ signaling. We included in the model all the major contributors of a proper Ca2+ signaling during both the fasting and the postprandial state. Our modeling results are in good agreement with available experimental data. The analysis of modeling results suggests that MAMs dysfunction alone cannot result in abnormal Ca2+ signaling and the wrong modulation of IP3-receptors is a more definite reason. However, both the MAMs dysfunction and the IP3 signaling dysregulation combined can lead to a robust Ca2+ signal and improper glucose release. In addition, our model results suggest a strong dependence of Ca2+ oscillations pattern on morphological characteristics of the ER and the mitochondria.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Humanos , Modelos Teóricos
2.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391919

RESUMO

In this study, we examine the topography and adhesion images of the cell surface of neutrophils during the activation process. Our analysis of cell surface parameters indicates that the most significant changes in neutrophils occur within the first 30 min of activation, suggesting that reactive oxygen species may require approximately this amount of time to activate the cells. Interestingly, we observed surface granular structure as early as 10 min after neutrophil activation when examining atomic force microscopy images. This finding aligns with the reorganization observed within the cells under confocal laser scanning microscopy. By analyzing the cell surface images of adhesion, we identified three spatial surface parameters that correlate with the activation time. This finding enables us to estimate the degree of activation by using atomic force microscopy maps of the cell surface.


Assuntos
Ativação de Neutrófilo , Microscopia de Força Atômica/métodos , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA