Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7756): E4, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31043737

RESUMO

Further analysis has revealed that the signal reported in Extended Data Fig. 1c of this Letter is attributed to phosphorylethanolamine, not carbamoyl phosphate. A newly developed derivatization method revealed that the level of carbamoyl phosphate in these NSCLC extracts is below the detection threshold of approximately 10 nanomoles. These findings do not alter the overall conclusions of the Letter; see associated Amendment for full details. The Letter has not been corrected online.

2.
Nature ; 546(7656): 168-172, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538732

RESUMO

Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , DNA/biossíntese , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Amônia/metabolismo , Animais , Bicarbonatos/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular , Proliferação de Células , Dano ao DNA/efeitos dos fármacos , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Inativação Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Nitrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/metabolismo , Pirimidinas/farmacologia , Fase S , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 538(7623): 114-117, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27680702

RESUMO

The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5-Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1-TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas Relacionadas à Folistatina/genética , Genes Letais/genética , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Porfirinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Verteporfina , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Proteína Exportina 1
4.
Cancer Immunol Immunother ; 70(7): 1965-1976, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33416944

RESUMO

INTRODUCTION: CD73 is a membrane-bound enzyme crucial in adenosine generation. The adenosinergic pathway plays a critical role in immunosuppression and in anti-tumor effects of immune checkpoint inhibitors (ICI). Here, we interrogated CD73 expression in a richly annotated cohort of human lung adenocarcinoma (LUAD) and its association with clinicopathological, immune, and molecular features to better understand the role of this immune marker in LUAD pathobiology. MATERIALS AND METHODS: Protein expression of CD73 was evaluated by immunohistochemistry in 106 archived LUADs from patients that underwent surgical treatment without neoadjuvant therapy. Total CD73 (T +) was calculated as the average of luminal (L +) and basolateral (BL +) percentage membrane expression scores for each LUAD and was used to classify tumors into three groups based on the extent of T CD73 expression (high, low, and negative). RESULTS: CD73 expression was significantly and progressively increased across normal-appearing lung tissue, adenomatous atypical hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma, and LUAD. In LUAD, BL CD73 expression was associated with an increase in PD-L1 expression in tumor cells and increase of tumor-associated immune cells. Stratification of LUADs based on T CD73 extent also revealed that tumors with high expression of this enzyme overall exhibited significantly elevated immune infiltration and PD-L1 protein expression. Immune profiling demonstrated that T-cell inflammation and adenosine signatures were significantly higher in CD73-expressing lung adenocarcinomas relative to those lacking CD73. CONCLUSION: Our study suggests that higher CD73 expression is associated with an overall augmented host immune response, suggesting potential implications in the immune pathobiology of early stage lung adenocarcinoma. Our findings warrant further studies to explore the role of CD73 in immunotherapeutic response of LUAD.


Assuntos
5'-Nucleotidase/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/patologia , Fatores Imunológicos/imunologia , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Seguimentos , Proteínas Ligadas por GPI/metabolismo , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
5.
Proc Natl Acad Sci U S A ; 115(8): 1913-1918, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29434041

RESUMO

Polo-like kinase 4 (PLK4) is a serine/threonine kinase regulating centriole duplication. CFI-400945 is a highly selective PLK4 inhibitor that deregulates centriole duplication, causing mitotic defects and death of aneuploid cancers. Prior work was substantially extended by showing CFI-400945 causes polyploidy, growth inhibition, and apoptotic death of murine and human lung cancer cells, despite expression of mutated KRAS or p53. Analysis of DNA content by propidium iodide (PI) staining revealed cells with >4N DNA content (polyploidy) markedly increased after CFI-400945 treatment. Centrosome numbers and mitotic spindles were scored. CFI-400945 treatment produced supernumerary centrosomes and mitotic defects in lung cancer cells. In vivo antineoplastic activity of CFI-400945 was established in mice with syngeneic lung cancer xenografts. Lung tumor growth was significantly inhibited at well-tolerated dosages. Phosphohistone H3 staining of resected lung cancers following CFI-400945 treatment confirmed the presence of aberrant mitosis. PLK4 expression profiles in human lung cancers were explored using The Cancer Genome Atlas (TCGA) and RNA in situ hybridization (RNA ISH) of microarrays containing normal and malignant lung tissues. PLK4 expression was significantly higher in the malignant versus normal lung and conferred an unfavorable survival (P < 0.05). Intriguingly, cyclin dependent kinase 2 (CDK2) antagonism cooperated with PLK4 inhibition. Taken together, PLK4 inhibition alone or as part of a combination regimen is a promising way to combat lung cancer.


Assuntos
Apoptose/efeitos dos fármacos , Indazóis/farmacologia , Indóis/farmacologia , Poliploidia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Centrossomo , Regulação Neoplásica da Expressão Gênica , Humanos , Indazóis/uso terapêutico , Indóis/uso terapêutico , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo
6.
Cancer Immunol Immunother ; 69(8): 1519-1534, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32300858

RESUMO

Enhanced tumor glycolytic activity is a mechanism by which tumors induce an immunosuppressive environment to resist adoptive T cell therapy; therefore, methods of assessing intratumoral glycolytic activity are of considerable clinical interest. In this study, we characterized the relationships among tumor 18F-fluorodeoxyglucose (FDG) retention, tumor metabolic and immune phenotypes, and survival in patients with resected non-small cell lung cancer (NSCLC). We retrospectively analyzed tumor preoperative positron emission tomography (PET) 18F-FDG uptake in 59 resected NSCLCs and investigated correlations between PET parameters (SUVMax, SUVTotal, SUVMean, TLG), tumor expression of glycolysis- and immune-related genes, and tumor-associated immune cell densities that were quantified by immunohistochemistry. Tumor glycolysis-associated immune gene signatures were analyzed for associations with survival outcomes. We found that each 18F-FDG PET parameter was positively correlated with tumor expression of glycolysis-related genes. Elevated 18F-FDG SUVMax was more discriminatory of glycolysis-associated changes in tumor immune phenotypes than other 18F-FDG PET parameters. Increased SUVMax was associated with multiple immune factors characteristic of an immunosuppressive and poorly immune infiltrated tumor microenvironment, including elevated PD-L1 expression, reduced CD57+ cell density, and increased T cell exhaustion gene signature. Elevated SUVMax identified immune-related transcriptomic signatures that were associated with enhanced tumor glycolytic gene expression and poor clinical outcomes. Our results suggest that 18F-FDG SUVMax has potential value as a noninvasive, clinical indicator of tumor immunometabolic phenotypes in patients with resectable NSCLC and warrants investigation as a potential predictor of therapeutic response to immune-based treatment strategies.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fluordesoxiglucose F18/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Glicólise , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Prognóstico , Compostos Radiofarmacêuticos/metabolismo , Estudos Retrospectivos , Taxa de Sobrevida , Transcriptoma
9.
Front Oncol ; 13: 1025443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035141

RESUMO

The glucocorticoid receptor (GR) is an important anti-cancer target in lymphoid cancers but has been understudied in solid tumors like lung cancer, although glucocorticoids are often given with chemotherapy regimens to mitigate side effects. Here, we identify a dexamethasone-GR mediated anti-cancer response in a subset of aggressive non-small cell lung cancers (NSCLCs) that harbor Serine/Threonine Kinase 11 (STK11/LKB1) mutations. High tumor expression of carbamoyl phosphate synthase 1 (CPS1) was strongly linked to the presence of LKB1 mutations, was the best predictor of NSCLC dexamethasone (DEX) sensitivity (p < 10-16) but was not mechanistically involved in DEX sensitivity. Subcutaneous, orthotopic and metastatic NSCLC xenografts, biomarker-selected, STK11/LKB1 mutant patient derived xenografts, and genetically engineered mouse models with KRAS/LKB1 mutant lung adenocarcinomas all showed marked in vivo anti-tumor responses with the glucocorticoid dexamethasone as a single agent or in combination with cisplatin. Mechanistically, GR activation triggers G1/S cell cycle arrest in LKB1 mutant NSCLCs by inducing the expression of the cyclin-dependent kinase inhibitor, CDKN1C/p57(Kip2). All findings were confirmed with functional genomic experiments including CRISPR knockouts and exogenous expression. Importantly, DEX-GR mediated cell cycle arrest did not interfere with NSCLC radiotherapy, or platinum response in vitro or with platinum response in vivo. While DEX induced LKB1 mutant NSCLCs in vitro exhibit markers of cellular senescence and demonstrate impaired migration, in vivo DEX treatment of a patient derived xenograft (PDX) STK11/LKB1 mutant model resulted in expression of apoptosis markers. These findings identify a previously unknown GR mediated therapeutic vulnerability in STK11/LKB1 mutant NSCLCs caused by induction of p57(Kip2) expression with both STK11 mutation and high expression of CPS1 as precision medicine biomarkers of this vulnerability.

10.
J Med Cases ; 12(4): 149-151, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34434449

RESUMO

We report on a patient who presented to the ear, nose, and throat (ENT) clinic with an 8-month-old left non-pulsatile tinnitus. Imaging studies, Neck computed tomography (CT) and magnetic resonance imaging (MRI) revealed soft tissue mass in the left middle ear with invasion to the middle cranial fossa and external auditory canal.

11.
Cancer Discov ; 11(11): 2738-2747, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34261675

RESUMO

Malignant peritoneal mesothelioma (MPeM) is a rare but aggressive malignancy with limited treatment options. VEGF inhibition enhances efficacy of immune-checkpoint inhibitors by reworking the immunosuppressive tumor milieu. Efficacy and safety of combined PD-L1 (atezolizumab) and VEGF (bevacizumab) blockade (AtezoBev) was assessed in 20 patients with advanced and unresectable MPeM with progression or intolerance to prior platinum-pemetrexed chemotherapy. The primary endpoint of confirmed objective response rate per RECISTv1.1 by independent radiology review was 40% [8/20; 95% confidence interval (CI), 19.1-64.0] with median response duration of 12.8 months. Six (75%) responses lasted for >10 months. Progression-free and overall survival at one year were 61% (95% CI, 35-80) and 85% (95% CI, 60-95), respectively. Responses occurred notwithstanding low tumor mutation burden and PD-L1 expression status. Baseline epithelial-mesenchymal transition gene expression correlated with therapeutic resistance/response (r = 0.80; P = 0.0010). AtezoBev showed promising and durable efficacy in patients with advanced MPeM with an acceptable safety profile, and these results address a grave unmet need for this orphan disease. SIGNIFICANCE: Efficacy of atezolizumab and bevacizumab vis-à-vis response rates and survival in advanced peritoneal mesothelioma previously treated with chemotherapy surpassed outcomes expected with conventional therapies. Biomarker analyses uncovered epithelial-mesenchymal transition phenotype as an important resistance mechanism and showcase the value and feasibility of performing translationally driven clinical trials in rare tumors.See related commentary by Aldea et al., p. 2674.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Antígeno B7-H1 , Mesotelioma , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno B7-H1/metabolismo , Bevacizumab/uso terapêutico , Biomarcadores Tumorais , Humanos , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/patologia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
12.
Cell Rep ; 35(3): 109009, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882319

RESUMO

Cancer cells function as primary architects of the tumor microenvironment. However, the molecular features of cancer cells that govern stromal cell phenotypes remain unclear. Here, we show that cancer-associated fibroblast (CAF) heterogeneity is driven by lung adenocarcinoma (LUAD) cells at either end of the epithelial-to-mesenchymal transition (EMT) spectrum. LUAD cells that have high expression of the EMT-activating transcription factor ZEB1 reprogram CAFs through a ZEB1-dependent secretory program and direct CAFs to the tips of invasive projections through a ZEB1-driven CAF repulsion process. The EMT, in turn, sensitizes LUAD cells to pro-metastatic signals from CAFs. Thus, CAFs respond to contextual cues from LUAD cells to promote metastasis.


Assuntos
Adenocarcinoma de Pulmão/genética , Fibroblastos Associados a Câncer/metabolismo , Células Epiteliais/metabolismo , Neoplasias Renais/genética , Neoplasias Pulmonares/genética , Células-Tronco Mesenquimais/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/secundário , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Receptor com Domínio Discoidina 2/genética , Receptor com Domínio Discoidina 2/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Microambiente Tumoral/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
13.
Ann Thorac Surg ; 110(4): 1131-1138, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32442617

RESUMO

BACKGROUND: Mutations in the serine/threonine kinase 11 (STK11)/liver kinase B1 (LKB1) have been implicated in mediating resistance to checkpoint blockade among patients with advanced lung adenocarcinoma. We sought to examine the associations between clinicopathologic characteristics, tumor LKB1 expression, features of the immune microenvironment, and postoperative prognosis among patients with early stage lung adenocarcinoma undergoing surgical therapy. METHODS: Formalin-fixed, paraffin-embedded specimens of patients undergoing resection of stage I to III, chemotherapy-naïve adenocarcinomas (1997 to 2008) were analyzed using tissue microarray sectioning. Sublobar resections were excluded. Intratumoral LKB1/STK11 expression was quantified as H-score. In a subset, tumor-associated immune cell populations were quantified using whole tumor sections in peritumoral and intratumoral compartments. RESULTS: In all, 104 patients met inclusion criteria. Expression of LKB1/STK11 (median H-score 102.9) was higher in women (median 123.3) than in men (100, P = .004) and in never-smokers (median 145) than in former/current smokers (100, P = .002). Expression of LKB1/STK11 was positively correlated with intratumoral infiltration of cluster of differentiation (CD) 3+ (r = 0.351, P = .005), CD4+ (r = 0.436, P < .001), and CD8+ (r = 0.263, P = .049) cells. Patients with extrathoracic recurrence had lower tumor expression of LKB1/STK11 than did other patients with recurrent disease. On multivariate analysis, low LKB1/STK11 expression remained independently associated with poor disease-free survival and distant disease-free survival. CONCLUSIONS: Low LKB1/STK11 expression is associated with specific patient characteristics and poor postoperative prognosis in chemotherapy-naïve lung adenocarcinoma. Further investigation is warranted to delineate its clinical significance in the context of evaluating novel therapeutic agents in patients with resectable disease.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Recidiva Local de Neoplasia/metabolismo , Estadiamento de Neoplasias , Proteínas Serina-Treonina Quinases/biossíntese , Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma de Pulmão/diagnóstico , Idoso , Biomarcadores Tumorais/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Prognóstico , Estudos Retrospectivos
14.
Neoplasia ; 22(8): 294-310, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32512502

RESUMO

Using a mini-library of 1062 lentiviral shRNAs targeting 40 nuclear hormone receptors and 70 of their co-regulators, we searched for potential therapeutic targets that would be important during in vivo tumor growth using a parallel in vitro and in vivo shRNA screening strategy in the non-small cell lung cancer (NSCLC) line NCI-H1819. We identified 21 genes essential for in vitro growth, and nine genes specifically required for tumor survival in vivo, but not in vitro: NCOR2, FOXA1, HDAC1, RXRA, RORB, RARB, MTA2, ETV4, and NR1H2. We focused on FOXA1, since it lies within the most frequently amplified genomic region in lung adenocarcinomas. We found that 14q-amplification in NSCLC cell lines was a biomarker for FOXA1 dependency for both in vivo xenograft growth and colony formation, but not mass culture growth in vitro. FOXA1 knockdown identified genes involved in electron transport among the most differentially regulated, indicating FOXA1 loss may lead to a decrease in cellular respiration. In support of this, FOXA1 amplification was correlated with increased sensitivity to the complex I inhibitor phenformin. Integrative ChipSeq analyses reveal that FOXA1 functions in this genetic context may be at least partially independent of NKX2-1. Our findings are consistent with a neomorphic function for amplified FOXA1, driving an oncogenic transcriptional program. These data provide new insight into the functional consequences of FOXA1 amplification in lung adenocarcinomas, and identify new transcriptional networks for exploration of therapeutic vulnerabilities in this patient population.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Genômica/métodos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Pulmonares/patologia , Trombospondina 1/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores Citoplasmáticos e Nucleares , Trombospondina 1/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Chem Biol ; 27(1): 105-121.e14, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31883965

RESUMO

RUVBL1 and RUVBL2 (collectively RUVBL1/2) are essential AAA+ ATPases that function as co-chaperones and have been implicated in cancer. Here we investigated the molecular and phenotypic role of RUVBL1/2 ATPase activity in non-small cell lung cancer (NSCLC). We find that RUVBL1/2 are overexpressed in NSCLC patient tumors, with high expression associated with poor survival. Utilizing a specific inhibitor of RUVBL1/2 ATPase activity, we show that RUVBL1/2 ATPase activity is necessary for the maturation or dissociation of the PAQosome, a large RUVBL1/2-dependent multiprotein complex. We also show that RUVBL1/2 have roles in DNA replication, as inhibition of its ATPase activity can cause S-phase arrest, which culminates in cancer cell death via replication catastrophe. While in vivo pharmacological inhibition of RUVBL1/2 results in modest antitumor activity, it synergizes with radiation in NSCLC, but not normal cells, an attractive property for future preclinical development.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Neoplasias Pulmonares/metabolismo , Complexos Multiproteicos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Estrutura Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Tolerância a Radiação
16.
Appl Immunohistochem Mol Morphol ; 27(4): 287-294, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29135534

RESUMO

Preliminary data suggest that tumor expression of programmed cell death ligand 1 (PD-L1) protein in human cancers, as determined by immunohistochemistry in formalin-fixed, paraffin-embedded tissue samples, may predict clinical response to anti-PD-1/PD-L1 therapy. PD-L1 is not a specific tumor marker and its expression is also observed in various nonmalignant cells, such as macrophages and lymphocytes, causing confusion in immunohistochemistry analysis when these inflammatory cells are overlapping with tumors cells. The aim of the current study was to examine PD-L1 expression in formalin-fixed, paraffin-embedded malignant and nonmalignant cells from human tumors to establish potential characteristic patterns of PD-L1 expression in tumor tissues. We used a commercial PD-L1 clone (E1L3N) previously validated in our laboratory to characterize PD-L1 expression in surgically resected lung adenocarcinomas, lung squamous cell carcinomas, malignant melanomas, renal cell carcinomas, hepatocellular carcinomas, and ductal breast carcinomas. We observed different patterns of PD-L1 expression by malignant cells and nonmalignant cells as membrane, cytoplasmic, and nuclear expression. The distribution of expression was variable including the entire malignant cells population, heterogonous with random distribution, peripheral distribution, minimal expression by few cells and negative expression. Similar, nonmalignant cells showed randomly and peripherally distribution through the tumors. We concluded that the PD-L1 cell protein expression patterns and distributions are variable and differ between resected tumor specimens. The expression and distribution pattern described here provide a useful knowledgment of PD-L1 expression in tumor samples.


Assuntos
Antígeno B7-H1/biossíntese , Biomarcadores Tumorais/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias , Adulto , Idoso , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/patologia
17.
J Med Cases ; 10(12): 354-358, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34434308

RESUMO

We report a patient who presented with swelling to the left submandibular region. Imaging studies revealed an expansive heterogeneous process. The patient underwent tumor resection and a biopsy confirmed the presence of a salivary duct carcinoma. Additional treatment included chemotherapy and the patient is currently receiving palliative and supportive care for advanced metastatic disease.

18.
Mol Cancer Ther ; 18(10): 1775-1786, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358662

RESUMO

The spindle assembly checkpoint maintains genomic integrity. A key component is tyrosine threonine kinase (TTK, also known as Mps1). TTK antagonism is hypothesized to cause genomic instability and cell death. Interrogating The Cancer Genome Atlas revealed high TTK expression in lung adenocarcinomas and squamous cell cancers versus the normal lung (P < 0.001). This correlated with an unfavorable prognosis in examined lung adenocarcinoma cases (P = 0.007). TTK expression profiles in lung tumors were independently assessed by RNA in situ hybridization. CFI-402257 is a highly selective TTK inhibitor. Its potent antineoplastic effects are reported here against a panel of well-characterized murine and human lung cancer cell lines. Significant antitumorigenic activity followed independent treatments of athymic mice bearing human lung cancer xenografts (6.5 mg/kg, P < 0.05; 8.5 mg/kg, P < 0.01) and immunocompetent mice with syngeneic lung cancers (P < 0.001). CFI-402257 antineoplastic mechanisms were explored. CFI-402257 triggered aneuploidy and apoptotic death of lung cancer cells without changing centrosome number. Reverse phase protein arrays (RPPA) of vehicle versus CFI-402257-treated lung cancers were examined using more than 300 critical growth-regulatory proteins. RPPA bioinformatic analyses discovered CFI-402257 enhanced MAPK signaling, implicating MAPK antagonism in augmenting TTK inhibitory effects. This was independently confirmed using genetic and pharmacologic repression of MAPK that promoted CFI-402257 anticancer actions. TTK antagonism exerted marked antineoplastic effects against lung cancers and MAPK inhibition cooperated. Future work should determine whether CFI-402257 treatment alone or with a MAPK inhibitor is active in the lung cancer clinic.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Poliploidia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Anáfase/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Humanos , Camundongos , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia
19.
Sci Transl Med ; 11(483)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867319

RESUMO

Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors have failed to show clinical benefit in Kirsten rat sarcoma (KRAS) mutant lung cancer due to various resistance mechanisms. To identify differential therapeutic sensitivities between epithelial and mesenchymal lung tumors, we performed in vivo small hairpin RNA screens, proteomic profiling, and analysis of patient tumor datasets, which revealed an inverse correlation between mitogen-activated protein kinase (MAPK) signaling dependency and a zinc finger E-box binding homeobox 1 (ZEB1)-regulated epithelial-to-mesenchymal transition. Mechanistic studies determined that MAPK signaling dependency in epithelial lung cancer cells is due to the scaffold protein interleukin-17 receptor D (IL17RD), which is directly repressed by ZEB1. Lung tumors in multiple Kras mutant murine models with increased ZEB1 displayed low IL17RD expression, accompanied by MAPK-independent tumor growth and therapeutic resistance to MEK inhibition. Suppression of ZEB1 function with miR-200 expression or the histone deacetylase inhibitor mocetinostat sensitized resistant cancer cells to MEK inhibition and markedly reduced in vivo tumor growth, showing a promising combinatorial treatment strategy for KRAS mutant cancers. In human lung tumor samples, high ZEB1 and low IL17RD expression correlated with low MAPK signaling, presenting potential markers that predict patient response to MEK inhibitors.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Neoplasias/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Interleucina-17/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Mesoderma/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
20.
Appl Immunohistochem Mol Morphol ; 26(2): 83-93, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28719380

RESUMO

Programmed cell death ligand 1 (PD-L1) is a major immune checkpoint protein that mediates antitumor immune suppression and response. Preliminary data suggest that its detection using immunohistochemistry (IHC) in formalin-fixed and paraffin-embedded tissues may predict clinical response to PD-1/PD-L1 therapy. In diagnostic pathology, it is essential to count with a validated IHC that can reliably detect PD-L1-positive cases. The present study was conducted to compare and validate different PD-L1 commercial clones and identify which ones can be reliably used by surgical pathologist to detect PD-L1 expression in human cancer tissues. Eight commercial available PD-L1 clones were tested and compared with a noncommercial PD-L1 antibody clone 5H1. Western blot and IHC using cell lines and human tissues were used to validate these clones. From all PD-L1 antibodies, only the clones E1L3N, E1J2J, SP142, 28-8, 22C3, and SP263 passed the Western blot and IHC validation, providing similar pattern than the clone 5H1 and then they were tested in 259 non-small cell lung cancer cases placed in 9 tissue microarrays. Among all cases, only those with ≥2 cores were included (185 cases). Positive and significant correlation was found between the median PD-L1 H-score in tumor and stroma compartments, for all selected antibodies. Overall, 56 of 185 cases were detected as positive cases in malignant cells expressing membranous PD-L1 by all the clones. However, the clone SP263 identified more PD-L1-positive cases compared with the other clones. Our results show that clones E1L3N, E1J2J, SP142, 28-8, 22C3, and SP263 provide positive membrane staining pattern comparable with clone 5H1. These commercial clones are comparable, but a careful evaluation by the pathologist is necessary to minimize error of positive misinterpretations.


Assuntos
Anticorpos Monoclonais/metabolismo , Linfócitos B/fisiologia , Antígeno B7-H1/metabolismo , Biomarcadores Farmacológicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Imuno-Histoquímica/métodos , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Células Clonais , Células HEK293 , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/imunologia , Valor Preditivo dos Testes , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA