Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(3): 517-526.e18, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111075

RESUMO

The gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Microbiota , Peptídeo Sintases/metabolismo , Pirazinas/metabolismo , Animais , Bacillus subtilis/genética , Bactérias/classificação , Bactérias/genética , Escherichia coli/genética , Fezes/microbiologia , Humanos , Peptídeo Sintases/genética , Filogenia
2.
Nat Chem Biol ; 20(2): 211-220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770697

RESUMO

Monitoring environmental DNA can track the presence of organisms, from viruses to animals, but requires continuous sampling of transient sequences from a complex milieu. Here we designed living sentinels using Bacillus subtilis to report the uptake of a DNA sequence after matching it to a preencoded target. Overexpression of ComK increased DNA uptake 3,000-fold, allowing for femtomolar detection in samples dominated by background DNA. This capability was demonstrated using human sequences containing single-nucleotide polymorphisms (SNPs) associated with facial features. Sequences were recorded with high efficiency and were protected from nucleases for weeks. The SNP could be determined by sequencing or in vivo using CRISPR interference to turn on reporter expression in response to a specific base. Multiple SNPs were recorded by one cell or through a consortium in which each member recorded a different sequence. Sentinel cells could surveil for specific sequences over long periods of time for applications spanning forensics, ecology and epidemiology.


Assuntos
DNA Ambiental , Humanos , Sequência de Bases , Proteínas de Bactérias/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , DNA/genética , DNA/metabolismo
3.
Nat Rev Mol Cell Biol ; 15(4): 289-94, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24622617

RESUMO

Synthetic biology, despite still being in its infancy, is increasingly providing valuable information for applications in the clinic, the biotechnology industry and in basic molecular research. Both its unique potential and the challenges it presents have brought together the expertise of an eclectic group of scientists, from cell biologists to engineers. In this Viewpoint article, five experts discuss their views on the future of synthetic biology, on its main achievements in basic and applied science, and on the bioethical issues that are associated with the design of new biological systems.


Assuntos
Biotecnologia , Engenharia Genética , Biologia Sintética/normas , Biologia de Sistemas , Guias como Assunto , Humanos , Biologia Sintética/ética , Biologia Sintética/legislação & jurisprudência
4.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395309

RESUMO

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Assuntos
Burkholderiales , Hidrolases , Polietilenotereftalatos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Reciclagem , Cinética , Burkholderiales/enzimologia , Modelos Químicos
5.
Nature ; 574(7780): 702-706, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645757

RESUMO

Gene duplication is a common and powerful mechanism by which cells create new signalling pathways1,2, but recently duplicated proteins typically must become insulated from each other and from other paralogues to prevent unwanted crosstalk3. A similar challenge arises when new sensors or synthetic signalling pathways are engineered within cells or transferred between genomes. How easily new pathways can be introduced into cells depends on the density and distribution of paralogous pathways in the sequence space that is defined by their specificity-determining residues4,5. Here we directly investigate how crowded this sequence space is, by generating novel two-component signalling proteins in Escherichia coli using cell sorting coupled to deep sequencing to analyse large libraries designed on the basis of coevolutionary patterns. We produce 58 insulated pathways comprising functional kinase-substrate pairs that have different specificities than their parent proteins, and demonstrate that several of these new pairs are orthogonal to all 27 paralogous pathways in E. coli. Additionally, from the kinase-substrate pairs generated, we identify sets consisting of six pairs that are mutually orthogonal to each other, which considerably increases the two-component signalling capacity of E. coli. These results indicate that sequence space is not densely occupied. The relative sparsity of paralogues in sequence space suggests that new insulated pathways can arise easily during evolution, or be designed de novo. We demonstrate the latter by engineering a signalling pathway in E. coli that responds to a plant cytokinin, without crosstalk to extant pathways. Our work also demonstrates how coevolution-guided mutagenesis and the mapping of sequence space can be used to design large sets of orthogonal protein-protein interactions.


Assuntos
Proteínas de Bactérias , Engenharia de Proteínas , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Mutagênese , Análise de Sequência de Proteína , Transdução de Sinais/genética
6.
Proc Natl Acad Sci U S A ; 119(16): e2117465119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412890

RESUMO

Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.


Assuntos
Azorhizobium caulinodans , Grão Comestível , Hordeum , Fixação de Nitrogênio , Nitrogenase , Raízes de Plantas , Azorhizobium caulinodans/enzimologia , Azorhizobium caulinodans/genética , Grão Comestível/microbiologia , Hordeum/microbiologia , Inositol/análogos & derivados , Inositol/genética , Inositol/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Raízes de Plantas/microbiologia , Simbiose
7.
Cell ; 137(7): 1272-81, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563759

RESUMO

Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.


Assuntos
Algoritmos , Escherichia coli/genética , Aumento da Imagem/métodos , Luz , Gráficos por Computador , Modelos Teóricos
8.
Bioinformatics ; 38(2): 404-409, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34570169

RESUMO

MOTIVATION: Applications in synthetic and systems biology can benefit from measuring whole-cell response to biochemical perturbations. Execution of experiments to cover all possible combinations of perturbations is infeasible. In this paper, we present the host response model (HRM), a machine learning approach that maps response of single perturbations to transcriptional response of the combination of perturbations. RESULTS: The HRM combines high-throughput sequencing with machine learning to infer links between experimental context, prior knowledge of cell regulatory networks, and RNASeq data to predict a gene's dysregulation. We find that the HRM can predict the directionality of dysregulation to a combination of inducers with an accuracy of >90% using data from single inducers. We further find that the use of prior, known cell regulatory networks doubles the predictive performance of the HRM (an R2 from 0.3 to 0.65). The model was validated in two organisms, Escherichia coli and Bacillus subtilis, using new experiments conducted after training. Finally, while the HRM is trained with gene expression data, the direct prediction of differential expression makes it possible to also conduct enrichment analyses using its predictions. We show that the HRM can accurately classify >95% of the pathway regulations. The HRM reduces the number of RNASeq experiments needed as responses can be tested in silico prior to the experiment. AVAILABILITY AND IMPLEMENTATION: The HRM software and tutorial are available at https://github.com/sd2e/CDM and the configurable differential expression analysis tools and tutorials are available at https://github.com/SD2E/omics_tools. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Software , Biologia de Sistemas , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala
9.
Nat Mater ; 21(4): 471-478, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857911

RESUMO

Engineered living materials could have the capacity to self-repair and self-replicate, sense local and distant disturbances in their environment, and respond with functionalities for reporting, actuation or remediation. However, few engineered living materials are capable of both responsivity and use in macroscopic structures. Here we describe the development, characterization and engineering of a fungal-bacterial biocomposite grown on lignocellulosic feedstocks that can form mouldable, foldable and regenerative living structures. We have developed strategies to make human-scale biocomposite structures using mould-based and origami-inspired growth and assembly paradigms. Microbiome profiling of the biocomposite over multiple generations enabled the identification of a dominant bacterial component, Pantoea agglomerans, which was further isolated and developed into a new chassis. We introduced engineered P. agglomerans into native feedstocks to yield living blocks with new biosynthetic and sensing-reporting capabilities. Bioprospecting the native microbiota to develop engineerable chassis constitutes an important strategy to facilitate the development of living biomaterials with new properties and functionalities.


Assuntos
Pantoea , Materiais Biocompatíveis , Humanos , Pantoea/química , Pantoea/genética
10.
Mol Syst Biol ; 18(3): e10785, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315586

RESUMO

Living materials combine a material scaffold, that is often porous, with engineered cells that perform sensing, computing, and biosynthetic tasks. Designing such systems is difficult because little is known regarding signaling transport parameters in the material. Here, the development of a porous microplate is presented. Hydrogel barriers between wells have a porosity of 60% and a tortuosity factor of 1.6, allowing molecular diffusion between wells. The permeability of dyes, antibiotics, inducers, and quorum signals between wells were characterized. A "sentinel" strain was constructed by introducing orthogonal sensors into the genome of Escherichia coli MG1655 for IPTG, anhydrotetracycline, L-arabinose, and four quorum signals. The strain's response to inducer diffusion through the wells was quantified up to 14 mm, and quorum and antibacterial signaling were measured over 16 h. Signaling distance is dictated by hydrogel adsorption, quantified using a linear finite element model that yields adsorption coefficients from 0 to 0.1 mol m-3 . Parameters derived herein will aid the design of living materials for pathogen remediation, computation, and self-organizing biofilms.


Assuntos
Escherichia coli , Percepção de Quorum , Escherichia coli/genética , Hidrogéis , Porosidade , Transdução de Sinais
11.
Mol Syst Biol ; 17(11): e10512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34747560

RESUMO

Catalytically dead Cas9 (dCas9) is a programmable transcription factor that can be targeted to promoters through the design of small guide RNAs (sgRNAs), where it can function as an activator or repressor. Natural promoters use overlapping binding sites as a mechanism for signal integration, where the binding of one can block, displace, or augment the activity of the other. Here, we implemented this strategy in Escherichia coli using pairs of sgRNAs designed to repress and then derepress transcription through competitive binding. When designed to target a promoter, this led to 27-fold repression and complete derepression. This system was also capable of ratiometric input comparison over two orders of magnitude. Additionally, we used this mechanism for promoter sequence-independent control by adopting it for elongation control, achieving 8-fold repression and 4-fold derepression. This work demonstrates a new genetic control mechanism that could be used to build analog circuit or implement cis-regulatory logic on CRISPRi-targeted native genes.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Ligação Competitiva , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética
12.
Nat Chem Biol ; 16(2): 126-133, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792444

RESUMO

Materials can be made multifunctional by embedding them with living cells that perform sensing, synthesis, energy production, and physical movement. A challenge is that the conditions needed for living cells are not conducive to materials processing and require continuous water and nutrients. Here, we present a three dimensional (3D) printer that can mix material and cell streams to build 3D objects. Bacillus subtilis spores were printed within the material and germinated on its exterior surface, including spontaneously in new cracks. The material was resilient to extreme stresses, including desiccation, solvents, osmolarity, pH, ultraviolet light, and γ-radiation. Genetic engineering enabled the bacteria to respond to stimuli or produce chemicals on demand. As a demonstration, we printed custom-shaped hydrogels containing bacteria that can sense or kill Staphylococcus aureus, a causative agent of infections. This work demonstrates materials endued with living functions that can be used in applications that require storage or exposure to environmental stresses.


Assuntos
Bacillus subtilis , Impressão Tridimensional , Esporos Bacterianos , Ferimentos e Lesões/microbiologia , Antibacterianos/metabolismo , Bacillus subtilis/genética , Fenômenos Fisiológicos Bacterianos , Desenho de Equipamento , Escherichia coli , Concentração de Íons de Hidrogênio , Teste de Materiais , Microrganismos Geneticamente Modificados , Impressão Tridimensional/instrumentação , Percepção de Quorum , Sefarose/química , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia , Staphylococcus aureus , Estresse Fisiológico , Temperatura , Ácido Vanílico/análise
13.
Proc Natl Acad Sci U S A ; 116(50): 25078-25086, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767756

RESUMO

The radical S-adenosylmethionine (SAM) enzyme NifB occupies a central and essential position in nitrogenase biogenesis. NifB catalyzes the formation of an [8Fe-9S-C] cluster, called NifB-co, which constitutes the core of the active-site cofactors for all 3 nitrogenase types. Here, we produce functional NifB in aerobically cultured Saccharomyces cerevisiae Combinatorial pathway design was employed to construct 62 strains in which transcription units driving different expression levels of mitochondria-targeted nif genes (nifUSXB and fdxN) were integrated into the chromosome. Two combinatorial libraries totaling 0.7 Mb were constructed: An expression library of 6 partial clusters, including nifUSX and fdxN, and a library consisting of 28 different nifB genes mined from the Structure-Function Linkage Database and expressed at different levels according to a factorial design. We show that coexpression in yeast of the nitrogenase maturation proteins NifU, NifS, and FdxN from Azotobacter vinelandii with NifB from the archaea Methanocaldococcus infernus or Methanothermobacter thermautotrophicus yields NifB proteins equipped with [Fe-S] clusters that, as purified, support in vitro formation of NifB-co. Proof of in vivo NifB-co formation was additionally obtained. NifX as purified from aerobically cultured S. cerevisiae coexpressing M. thermautotrophicus NifB with A. vinelandii NifU, NifS, and FdxN, and engineered yeast SAM synthase supported FeMo-co synthesis, indicative of NifX carrying in vivo-formed NifB-co. This study defines the minimal genetic determinants for the formation of the key precursor in the nitrogenase cofactor biosynthetic pathway in a eukaryotic organism.


Assuntos
Proteínas de Bactérias/metabolismo , Compostos de Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Redes e Vias Metabólicas , Methanocaldococcus , Mitocôndrias/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogenase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Biologia Sintética
14.
Metab Eng ; 66: 308-318, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33460821

RESUMO

Achieving a high product titer through pathway optimization often requires screening many combinations of enzymes and genetic parts. Typically, a library is screened in a single chassis that is a model or production organism. Here, we present a technique where the library is first introduced into B. subtilis XPORT, which has the ability to transfer the DNA to many Gram-positive species using an inducible integrated conjugated element (ICE). This approach is demonstrated using a two-gene pathway that converts tyrosine to melanin, a pigment biopolymer that can serve as a protective coating. A library of 18 pathway variants is conjugated by XPORT into 18 species, including those isolated from soil and industrial contaminants. The resulting 324 strains are screened and the highest titer is 1.2 g/L in B. amyloliquefaciens BT16. The strains were evaluated as co-cultures in an industrial process to make mycelia-grown bulk materials, where the bacteria need to be productive in a stressful, spatially non-uniform and dynamic environment. B. subtilis BGSC 3A35 is found to perform well under these conditions and make melanin in the material, which can be seen visually. This approach enables the simultaneous screening of genetic designs and chassis during the build step of metabolic engineering.


Assuntos
Engenharia Metabólica , Biblioteca Gênica
15.
Mol Syst Biol ; 16(8): e9584, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812710

RESUMO

Genetic circuits have many applications, from guiding living therapeutics to ordering process in a bioreactor, but to be useful they have to be genetically stable and not hinder the host. Encoding circuits in the genome reduces burden, but this decreases performance and can interfere with native transcription. We have designed genomic landing pads in Escherichia coli at high-expression sites, flanked by ultrastrong double terminators. DNA payloads >8 kb are targeted to the landing pads using phage integrases. One landing pad is dedicated to carrying a sensor array, and two are used to carry genetic circuits. NOT/NOR gates based on repressors are optimized for the genome and characterized in the landing pads. These data are used, in conjunction with design automation software (Cello 2.0), to design circuits that perform quantitatively as predicted. These circuits require fourfold less RNA polymerase than when carried on a plasmid and are stable for weeks in a recA+ strain without selection. This approach enables the design of synthetic regulatory networks to guide cells in environments or for applications where plasmid use is infeasible.


Assuntos
Escherichia coli/genética , Redes Reguladoras de Genes , Engenharia Genética/métodos , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Software , Biologia Sintética
16.
Mol Syst Biol ; 16(3): e9401, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32141239

RESUMO

Synthetic genetic circuits offer the potential to wield computational control over biology, but their complexity is limited by the accuracy of mathematical models. Here, we present advances that enable the complete encoding of an electronic chip in the DNA carried by Escherichia coli (E. coli). The chip is a binary-coded digit (BCD) to 7-segment decoder, associated with clocks and calculators, to turn on segments to visualize 0-9. Design automation is used to build seven strains, each of which contains a circuit with up to 12 repressors and two activators (totaling 63 regulators and 76,000 bp DNA). The inputs to each circuit represent the digit to be displayed (encoded in binary by four molecules), and output is the segment state, reported as fluorescence. Implementation requires an advanced gate model that captures dynamics, promoter interference, and a measure of total power usage (RNAP flux). This project is an exemplar of design automation pushing engineering beyond that achievable "by hand", essential for realizing the potential of biology.


Assuntos
Escherichia coli/genética , Processamento de Sinais Assistido por Computador/instrumentação , Biologia Sintética/instrumentação , Algoritmos , Inteligência Artificial , Dispositivos de Armazenamento em Computador , Desenho de Equipamento
17.
Nat Chem Biol ; 15(2): 196-204, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478458

RESUMO

Cellular processes are carried out by many genes, and their study and optimization requires multiple levers by which they can be independently controlled. The most common method is via a genetically encoded sensor that responds to a small molecule. However, these sensors are often suboptimal, exhibiting high background expression and low dynamic range. Further, using multiple sensors in one cell is limited by cross-talk and the taxing of cellular resources. Here, we have developed a directed evolution strategy to simultaneously select for lower background, high dynamic range, increased sensitivity, and low cross-talk. This is applied to generate a set of 12 high-performance sensors that exhibit >100-fold induction with low background and cross-reactivity. These are combined to build a single "sensor array" in the genomes of E. coli MG1655 (wild-type), DH10B (cloning), and BL21 (protein expression). These "Marionette" strains allow for the independent control of gene expression using 12 small-molecule inducers.


Assuntos
Evolução Molecular Direcionada/métodos , Regulação Bacteriana da Expressão Gênica/genética , Engenharia Genética/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia
19.
Nucleic Acids Res ; 46(20): 11115-11125, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30289463

RESUMO

Large synthetic genetic circuits require the simultaneous expression of many regulators. Deactivated Cas9 (dCas9) can serve as a repressor by having a small guide RNA (sgRNA) direct it to bind a promoter. The programmability and specificity of RNA:DNA basepairing simplifies the generation of many orthogonal sgRNAs that, in theory, could serve as a large set of regulators in a circuit. However, dCas9 is toxic in many bacteria, thus limiting how high it can be expressed, and low concentrations are quickly sequestered by multiple sgRNAs. Here, we construct a non-toxic version of dCas9 by eliminating PAM (protospacer adjacent motif) binding with a R1335K mutation (dCas9*) and recovering DNA binding by fusing it to the PhlF repressor (dCas9*_PhlF). Both the 30 bp PhlF operator and 20 bp sgRNA binding site are required to repress a promoter. The larger region required for recognition mitigates toxicity in Escherichia coli, allowing up to 9600 ± 800 molecules of dCas9*_PhlF per cell before growth or morphology are impacted, as compared to 530 ± 40 molecules of dCas9. Further, PhlF multimerization leads to an increase in average cooperativity from n = 0.9 (dCas9) to 1.6 (dCas9*_PhlF). A set of 30 orthogonal sgRNA-promoter pairs are characterized as NOT gates; however, the simultaneous use of multiple sgRNAs leads to a monotonic decline in repression and after 15 are co-expressed the dynamic range is <10-fold. This work introduces a non-toxic variant of dCas9, critical for its use in applications in metabolic engineering and synthetic biology, and exposes a limitation in the number of regulators that can be used in one cell when they rely on a shared resource.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Guia de Cinetoplastídeos/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Redes Reguladoras de Genes , Engenharia Metabólica , Mutação , Regiões Promotoras Genéticas , Biologia Sintética
20.
J Emerg Med ; 58(5): 785-796, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31982197

RESUMO

BACKGROUND: Bacteremia causes a major worldwide burden, in terms of financial and productivity costs, as well the morbidity and mortality it can ultimately cause. Proper treatment of bacteremia is a challenge because of the species-dependent response to antibiotics. The T2Bacteria Panel is a U.S. Food and Drug Administration-cleared and culture-independent assay for detection of bacteremia, including common ESKAPE pathogens-Escherichia coli, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa-and provides species identification in as little as 3.6 h directly from blood. OBJECTIVE: Our aim was to evaluate the T2Bacteria assay performance and potential to affect patient care in the emergency department (ED). METHODS: ED patients from a Louisiana and Florida center were enrolled as part of the T2Bacteria Panel clinical study, which was prospective and noninterventional. Blood samples for blood culture (BC) and T2Bacteria were matched in time and anatomic location. RESULTS: Data from 137 ED patients were evaluated. Relative to BC, T2Bacteria showed 100% positive percent agreement and 98.4% negative percent agreement. In addition, for species on the T2Bacteria Panel, the T2Bacteria assay detected 25% more positives associated with infection, and on average identified the infectious species 56.6 h faster. The T2Bacteria assay covered 70.5% of all species detected by BC. Finally, relative to actual care, the T2Bacteria assay could have potentially focused therapy in 8 patients, reduced time to a species-directed therapy in 4 patients, and reduced time to effective therapy in 4 patients. CONCLUSIONS: In this ED population, the T2Bacteria assay was a rapid and sensitive detector of bacteremia from common ESKAPE pathogens and showed the theoretical potential to influence subsequent patient therapy, ranging from antibiotic de-escalation to faster time to effective therapy.


Assuntos
Bacteriemia , Serviço Hospitalar de Emergência , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Hemocultura , Humanos , Estudos Prospectivos , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA