Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(7): 3819-3827, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015138

RESUMO

Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1-/- knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.


Assuntos
Neurotransmissores/metabolismo , Sinaptotagmina I/metabolismo , Animais , Exocitose , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Sinapses/metabolismo , Transmissão Sináptica , Sinaptotagmina I/genética
2.
J Neurochem ; 156(1): 48-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32418206

RESUMO

Brain function relies on vesicular release of neurotransmitters at chemical synapses. The release probability depends on action potential-evoked presynaptic Ca2+ entry, but also on the resting Ca2+ level. Whether these basic aspects of presynaptic calcium homeostasis show any consistent trend along the axonal path, and how they are controlled by local network activity, remains poorly understood. Here, we take advantage of the recently advanced FLIM-based method to monitor presynaptic Ca2+ with nanomolar sensitivity. We find that, in cortical pyramidal neurons, action potential-evoked calcium entry (range 10-300 nM), but not the resting Ca2+ level (range 10-100 nM), tends to increase with higher order of axonal branches. Blocking astroglial glutamate uptake reduces evoked Ca2+ entry but has little effect on resting Ca2+ whereas both appear boosted by the constitutive activation of group 1/2 metabotropic glutamate receptors. We find no consistent effect of transient somatic depolarization or hyperpolarization on presynaptic Ca2+ entry or its basal level. The results unveil some key aspects of presynaptic machinery in cortical circuits, shedding light on basic principles of synaptic connectivity in the brain.


Assuntos
Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Imagem Óptica/métodos , Transmissão Sináptica/fisiologia , Animais , Córtex Cerebral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(28): 7434-7439, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29946034

RESUMO

Neuronal communication relies on action potential discharge, with the frequency and the temporal precision of action potentials encoding information. Hippocampal mossy fibers have long been recognized as conditional detonators owing to prominent short-term facilitation of glutamate release displayed during granule cell burst firing. However, the spiking patterns required to trigger action potential firing in CA3 pyramidal neurons remain poorly understood. Here, we show that glutamate release from mossy fiber terminals triggers action potential firing of the target CA3 pyramidal neurons independently of the average granule cell burst frequency, a phenomenon we term action potential counting. We find that action potential counting in mossy fibers gates glutamate release over a broad physiological range of frequencies and action potential numbers. Using rapid Ca2+ imaging we also show that the magnitude of evoked Ca2+ influx stays constant during action potential trains and that accumulated residual Ca2+ is gradually extruded on a time scale of several hundred milliseconds. Using experimentally constrained 3D model of presynaptic Ca2+ influx, buffering, and diffusion, and a Monte Carlo model of Ca2+-activated vesicle fusion, we argue that action potential counting at mossy fiber boutons can be explained by a unique interplay between Ca2+ dynamics and buffering at release sites. This is largely determined by the differential contribution of major endogenous Ca2+ buffers calbindin-D28K and calmodulin and by the loose coupling between presynaptic voltage-gated Ca2+ channels and release sensors and the relatively slow Ca2+ extrusion rate. Taken together, our results identify a previously unexplored information-coding mechanism in the brain.


Assuntos
Potenciais de Ação/fisiologia , Região CA3 Hipocampal/fisiologia , Sinalização do Cálcio/fisiologia , Modelos Neurológicos , Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/fisiologia , Animais , Região CA3 Hipocampal/citologia , Cálcio/metabolismo , Masculino , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/citologia , Ratos
4.
Proc Natl Acad Sci U S A ; 115(32): E7624-E7631, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038018

RESUMO

Regulated exocytosis, which underlies many intercellular signaling events, is a tightly controlled process often triggered by calcium ion(s) (Ca2+). Despite considerable insight into the central components involved, namely, the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal Ca2+ sensor [C2-domain proteins like synaptotagmin (Syt)], the molecular mechanism of Ca2+-dependent release has been unclear. Here, we report that the Ca2+-sensitive oligomers of Syt1, a conserved structural feature among several C2-domain proteins, play a critical role in orchestrating Ca2+-coupled vesicular release. This follows from pHluorin-based imaging of single-vesicle exocytosis in pheochromocytoma (PC12) cells showing that selective disruption of Syt1 oligomerization using a structure-directed mutation (F349A) dramatically increases the normally low levels of constitutive exocytosis to effectively occlude Ca2+-stimulated release. We propose a parsimonious model whereby Ca2+-sensitive oligomers of Syt (or a similar C2-domain protein) assembled at the site of docking physically block spontaneous fusion until disrupted by Ca2+ Our data further suggest Ca2+-coupled vesicular release is triggered by removal of the inhibition, rather than by direct activation of the fusion machinery.


Assuntos
Cálcio/metabolismo , Exocitose , Fusão de Membrana/fisiologia , Multimerização Proteica/fisiologia , Sinaptotagmina I/metabolismo , Animais , Cátions Bivalentes/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Imunofluorescência , Proteínas de Fluorescência Verde/química , Microscopia Eletrônica , Mutação , Células PC12 , Ligação Proteica/fisiologia , Ratos , Proteínas Recombinantes/metabolismo , Sinaptotagmina I/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
5.
Synapse ; 74(12): e22178, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598500

RESUMO

Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF-CA3 synapse. We found that asynchronous release at MF-CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst-evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q-type voltage-gated Ca2+ channels, while the contribution of N-type VGCCs was limited. Overall, our results uncover the determinants of long-lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.


Assuntos
Potenciais de Ação , Região CA3 Hipocampal/fisiologia , Cálcio/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Animais , Região CA3 Hipocampal/metabolismo , Canais de Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/fisiologia
6.
Proc Natl Acad Sci U S A ; 114(9): 2395-2400, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193892

RESUMO

Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog-digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels.


Assuntos
Potenciais de Ação , Ataxia/metabolismo , Hipocampo/metabolismo , Canal de Potássio Kv1.1/genética , Mioquimia/metabolismo , Neurônios/metabolismo , Subunidades Proteicas/genética , Animais , Ataxia/genética , Ataxia/patologia , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/patologia , Canal de Potássio Kv1.1/deficiência , Camundongos , Camundongos Knockout , Mioquimia/genética , Mioquimia/patologia , Neurônios/patologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Cultura Primária de Células , Subunidades Proteicas/deficiência , Transmissão Sináptica
7.
BMC Biol ; 16(1): 70, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29925374

RESUMO

BACKGROUND: Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing have led to the use of long single-stranded DNA (lssDNA) molecules for generating conditional mutations. However, there is still limited available data on the efficiency and reliability of this method. RESULTS: We generated conditional mouse alleles using lssDNA donor templates and performed extensive characterization of the resulting mutations. We observed that the use of lssDNA molecules as donors efficiently yielded founders bearing the conditional allele, with seven out of nine projects giving rise to modified alleles. However, rearranged alleles including nucleotide changes, indels, local rearrangements and additional integrations were also frequently generated by this method. Specifically, we found that alleles containing unexpected point mutations were found in three of the nine projects analyzed. Alleles originating from illegitimate repairs or partial integration of the donor were detected in eight projects. Furthermore, additional integrations of donor molecules were identified in four out of the seven projects analyzed by copy counting. This highlighted the requirement for a thorough allele validation by polymerase chain reaction, sequencing and copy counting of the mice generated through this method. We also demonstrated the feasibility of using lssDNA donors to generate thus far problematic point mutations distant from active CRISPR cutting sites by targeting two distinct genes (Gckr and Rims1). We propose a strategy to perform extensive quality control and validation of both types of mouse models generated using lssDNA donors. CONCLUSION: lssDNA donors reproducibly generate conditional alleles and can be used to introduce point mutations away from CRISPR/Cas9 cutting sites in mice. However, our work demonstrates that thorough quality control of new models is essential prior to reliably experimenting with mice generated by this method. These advances in genome editing techniques shift the challenge of mutagenesis from generation to the validation of new mutant models.


Assuntos
DNA de Cadeia Simples , Edição de Genes/métodos , Marcação de Genes , Camundongos/genética , Alelos , Animais , Sistemas CRISPR-Cas , Mutação , Reprodutibilidade dos Testes
8.
Soft Matter ; 12(38): 7953-8, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27604678

RESUMO

Directly examining subcellular mechanics whilst avoiding excessive strain of a live cell requires the precise control of light stress on very small areas, which is fundamentally difficult. Here we use a glass nanopipet out of contact with the plasma membrane to both exert the stress on the cell and also accurately monitor cellular compression. This allows the mapping of cell stiffness at a lateral resolution finer than 100 nm. We calculate the stress a nanopipet exerts on a cell as the sum of the intrinsic pressure between the tip face and the plasma membrane plus its direct pressure on any glycocalyx, both evaluated from the gap size in terms of the ion current decrease. A survey of cell types confirms that an intracellular pressure of approximately 120 Pa begins to detach the plasma membrane from the cytoskeleton and reveals that the first 0.66 ± 0.09 µm of compression of a neuron cell body is much softer than previous methods have been able to detect.


Assuntos
Membrana Celular/fisiologia , Microscopia/métodos , Animais , Linhagem Celular , Células Cultivadas , Citoplasma , Citoesqueleto , Fibroblastos/citologia , Humanos , Íons , Neurônios/citologia , Ratos
9.
PLoS Biol ; 10(9): e1001396, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049481

RESUMO

The efficacy of action potential evoked neurotransmitter release varies widely even among synapses supplied by the same axon, and the number of release-ready vesicles at each synapse is a major determinant of this heterogeneity. Here we identify a second, equally important, mechanism for release heterogeneity at small hippocampal synapses, the inter-synaptic variation of the exocytosis probability of release-ready vesicles. Using concurrent measurements of vesicular pool sizes, vesicular exocytosis rates, and presynaptic Ca²âº dynamics, in the same small hippocampal boutons, we show that the average fusion probability of release-ready vesicles varies among synapses supplied by the same axon with the size of the spike-evoked Ca²âº concentration transient. We further show that synapses with a high vesicular release probability exhibit a lower Ca²âº cooperativity, arguing that this is a direct consequence of increased Ca²âº influx at the active zone. We conclude that variability of neurotransmitter release under basal conditions at small central synapses is accounted for not only by the number of release-ready vesicles, but also by their fusion probabilities, which are set independently of bouton size by variable spike-evoked presynaptic Ca²âº influx.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Potenciais de Ação/fisiologia , Animais , Axônios/metabolismo , Soluções Tampão , Exocitose , Fluorescência , Ratos , Vesículas Sinápticas/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(29): 12113-8, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21724987

RESUMO

Latrophilin 1 (LPH1), a neuronal receptor of α-latrotoxin, is implicated in neurotransmitter release and control of presynaptic Ca(2+). As an "adhesion G-protein-coupled receptor," LPH1 can convert cell surface interactions into intracellular signaling. To examine the physiological functions of LPH1, we used LPH1's extracellular domain to purify its endogenous ligand. A single protein of ∼275 kDa was isolated from rat brain and termed Lasso. Peptide sequencing and molecular cloning have shown that Lasso is a splice variant of teneurin-2, a brain-specific orphan cell surface receptor with a function in neuronal pathfinding and synaptogenesis. We show that LPH1 and Lasso interact strongly and specifically. They are always copurified from rat brain extracts. Coculturing cells expressing LPH1 with cells expressing Lasso leads to their mutual attraction and formation of multiple junctions to which both proteins are recruited. Cells expressing LPH1 form chimerical synapses with hippocampal neurons in cocultures; LPH1 and postsynaptic neuronal protein PSD-95 accumulate on opposite sides of these structures. Immunoblotting and immunoelectron microscopy of purified synapses and immunostaining of cultured hippocampal neurons show that LPH1 and Lasso are enriched in synapses; in both systems, LPH1 is presynaptic, whereas Lasso is postsynaptic. A C-terminal fragment of Lasso interacts with LPH1 and induces Ca(2+) signals in presynaptic boutons of hippocampal neurons and in neuroblastoma cells expressing LPH1. Thus, LPH1 and Lasso can form transsynaptic complexes capable of inducing presynaptic Ca(2+) signals, which might affect synaptic functions.


Assuntos
Sinalização do Cálcio/fisiologia , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Peptídeos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Sequência de Bases , Clonagem Molecular , Hipocampo/fisiologia , Immunoblotting , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Ratos , Análise de Sequência de DNA
11.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659918

RESUMO

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic Ca2+ influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically-relevant conditions to delineate the minimal protein machinery sufficient to account for different modes of Ca2+-triggered vesicle fusion and short-term facilitation. We find that Synaptotagmin-1, Synaptotagmin-7, and Complexin, synergistically restrain SNARE complex assembly, thus preserving vesicles in a stably docked state at rest. Upon Ca2+ activation, Synaptotagmin-1 induces rapid vesicle fusion, while Synaptotagmin-7 mediates delayed fusion. Competitive binding of Synaptotagmin-1 and Synaptotagmin-7 to the same SNAREs, coupled with differential rates of Ca2+-triggered fusion clamp reversal, govern the kinetics of vesicular fusion. Under conditions mimicking sustained neuronal activity, the Synaptotagmin-7 fusion clamp is destabilized by the elevated basal Ca2+ concentration, thereby enhancing the synchronous component of fusion. These findings provide a direct demonstration that a small set of proteins is sufficient to account for how nerve terminals adapt and regulate the Ca2+-evoked neurotransmitter exocytosis process to support their specialized functions in the nervous system.

12.
Commun Biol ; 6(1): 1091, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891212

RESUMO

Calcium-evoked release of neurotransmitters from synaptic vesicles (SVs) is catalysed by SNARE proteins. The predominant view is that, at rest, complete assembly of SNARE complexes is inhibited ('clamped') by synaptotagmin and complexin molecules. Calcium binding by synaptotagmins releases this fusion clamp and triggers fast SV exocytosis. However, this model has not been quantitatively tested over physiological timescales. Here we describe an experimentally constrained computational modelling framework to quantitatively assess how the molecular architecture of the fusion clamp affects SV exocytosis. Our results argue that the 'release-of-inhibition' model can indeed account for fast calcium-activated SV fusion, and that dual binding of synaptotagmin-1 and synaptotagmin-7 to the same SNARE complex enables synergistic regulation of the kinetics and plasticity of neurotransmitter release. The developed framework provides a powerful and adaptable tool to link the molecular biochemistry of presynaptic proteins to physiological data and efficiently test the plausibility of calcium-activated neurotransmitter release models.


Assuntos
Cálcio , Sinapses , Cálcio/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Proteínas SNARE/metabolismo , Neurotransmissores/metabolismo
13.
Res Sq ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37163032

RESUMO

Calcium-evoked release of neurotransmitters from synaptic vesicles (SVs) is catalysed by SNARE proteins. The predominant view is that, at rest, complete assembly of SNARE complexes is inhibited ('clamped') by synaptotagmin and complexin molecules. Calcium binding by synaptotagmins releases this fusion clamp and triggers fast SV exocytosis. However, this model has not been quantitatively tested over physiological timescales. Here we describe an experimentally constrained computational modelling framework to quantitatively assess how the molecular architecture of the fusion clamp affects SV exocytosis. Our results argue that the "release-of-inhibition" model can indeed account for fast calcium-activated SV fusion, and that dual binding of synaptotagmin-1 and synaptotagmin-7 to the same SNARE complex enables synergistic regulation of the kinetics and plasticity of neurotransmitter release. The developed framework provides a powerful and adaptable tool to link the molecular biochemistry of presynaptic proteins to physiological data and efficiently test the plausibility of calcium-activated neurotransmitter release models.

14.
Nat Commun ; 13(1): 3497, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715404

RESUMO

The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that the synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses - the timing and the overall efficacy of neurotransmitter release.


Assuntos
Ácido Glutâmico , Sinapses , Exocitose/fisiologia , Neurotransmissores , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
15.
Nat Neurosci ; 9(9): 1091-3, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16878129

RESUMO

Although vesicle depletion contributes to short-term depression, several studies have reported that the release probability can be transiently depressed even if an action potential fails to evoke release. Here we argue that stochastic fluctuation in the release machinery can give rise to apparent release-independent depression as a result of sampling bias. The relationship between this apparent depression and the interstimulus interval provides a window on the kinetics of state transitions of the release apparatus.


Assuntos
Potenciais de Ação/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Humanos , Terminações Pré-Sinápticas/metabolismo , Fatores de Tempo
16.
Sci Adv ; 6(33): eabb3567, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851175

RESUMO

Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an Ile102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants. Our data show that global shifts in the synaptic efficiency across brain-wide networks leads to an altered probability of vigilance state transitions, possibly as a result of an altered excitability balance within local circuits controlling sleep-wake architecture.


Assuntos
Sono REM , Sono , Animais , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Camundongos , Sono/genética , Sono REM/genética , Vigília/genética
17.
Curr Opin Neurobiol ; 51: 154-162, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29886350

RESUMO

Quantal neurotransmitter release at nerve terminals is tightly regulated by the presynaptic Ca2+ concentration. Here, we summarise current advances in understanding how the interplay between presynaptic Ca2+ dynamics and different Ca2+ release sensors shapes action potential-evoked release on a timescale from hundreds of microseconds to hundreds of milliseconds. In particular, we review recent studies that reveal the synergistic roles of the low Ca2+ affinity/fast release sensors synaptotagmins 1, 2 and 9 and the high affinity/slow release sensor synaptotagmin 7 in the regulation of synchronous and asynchronous release and of short-term synaptic plasticity. We also examine new biochemical and structural data and outline a working model that could potentially explain the cooperative roles of different synaptotagmins in molecular terms.


Assuntos
Membrana Celular/metabolismo , Neurônios/citologia , Neurotransmissores/metabolismo , Sinaptotagminas/metabolismo , Animais , Cálcio/metabolismo , Neurônios/fisiologia
18.
Cell Rep ; 20(2): 333-343, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700936

RESUMO

Alternative splicing of pre-mRNAs is prominent in the mammalian brain, where it is thought to expand proteome diversity. For example, alternative splicing of voltage-gated Ca2+ channel (VGCC) α1 subunits can generate thousands of isoforms with differential properties and expression patterns. However, the impact of this molecular diversity on brain function, particularly on synaptic transmission, which crucially depends on VGCCs, is unclear. Here, we investigate how two major splice isoforms of P/Q-type VGCCs (Cav2.1[EFa/b]) regulate presynaptic plasticity in hippocampal neurons. We find that the efficacy of P/Q-type VGCC isoforms in supporting synaptic transmission is markedly different, with Cav2.1[EFa] promoting synaptic depression and Cav2.1[EFb] synaptic facilitation. Following a reduction in network activity, hippocampal neurons upregulate selectively Cav2.1[EFa], the isoform exhibiting the higher synaptic efficacy, thus effectively supporting presynaptic homeostatic plasticity. Therefore, the balance between VGCC splice variants at the synapse is a key factor in controlling neurotransmitter release and presynaptic plasticity.


Assuntos
Processamento Alternativo/fisiologia , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Processamento Alternativo/genética , Animais , Células Cultivadas , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Picrotoxina/farmacologia , Interferência de RNA , Ratos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
19.
Nat Commun ; 7: 12102, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381274

RESUMO

Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Ataxia/fisiopatologia , Canalopatias/fisiopatologia , Canal de Potássio Kv1.1/metabolismo , Mioquimia/fisiopatologia , Células de Purkinje/metabolismo , Animais , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Modelos Animais de Doenças , Venenos Elapídicos/farmacologia , Feminino , Expressão Gênica , Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.1/genética , Camundongos , Camundongos Transgênicos , Microtomia , Mutação , Mioquimia/genética , Mioquimia/metabolismo , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo
20.
J Neurosci ; 23(10): 4044-53, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12764091

RESUMO

Alpha-latrotoxin (LTX) stimulates vesicular exocytosis by at least two mechanisms that include (1) receptor binding-stimulation and (2) membrane pore formation. Here, we use the toxin mutant LTX(N4C) to selectively study the receptor-mediated actions of LTX. LTX(N4C) binds to both LTX receptors (latrophilin and neurexin) and greatly enhances the frequency of spontaneous and miniature EPSCs recorded from CA3 pyramidal neurons in hippocampal slice cultures. The effect of LTX(N4C) is reversible and is not attenuated by La3+ that is known to block LTX pores. On the other hand, LTX(N4C) action, which requires extracellular Ca2+, is inhibited by thapsigargin, a drug depleting intracellular Ca2+ stores, by 2-aminoethoxydiphenyl borate, a blocker of inositol(1,4,5)-trisphosphate-induced Ca2+ release, and by U73122, a phospholipase C inhibitor. Furthermore, measurements using a fluorescent Ca2+ indicator directly demonstrate that LTX(N4C) increases presynaptic, but not dendritic, free Ca2+ concentration; this Ca2+ rise is blocked by thapsigargin, suggesting, together with electrophysiological data, that the receptor-mediated action of LTX(N4C) involves mobilization of Ca2+ from intracellular stores. Finally, in contrast to wild-type LTX, which inhibits evoked synaptic transmission probably attributable to pore formation, LTX(N4C) actually potentiates synaptic currents elicited by electrical stimulation of afferent fibers. We suggest that the mutant LTX(N4C), lacking the ionophore-like activity of wild-type LTX, activates a presynaptic receptor and stimulates Ca2+ release from intracellular stores, leading to the enhancement of synaptic vesicle exocytosis.


Assuntos
Potenciais Evocados/efeitos dos fármacos , Neurotransmissores/metabolismo , Mutação Puntual , Células Piramidais/efeitos dos fármacos , Venenos de Aranha/genética , Venenos de Aranha/farmacologia , Substituição de Aminoácidos/genética , Animais , Animais Recém-Nascidos , Asparagina/genética , Cálcio/metabolismo , Técnicas de Cultura , Cisteína/genética , Exocitose/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/química , Ratos , Receptores de Peptídeos/metabolismo , Venenos de Aranha/metabolismo , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA