Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 164(1-2): 197-207, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26709045

RESUMO

Hippocampal neurons show selectivity with respect to visual cues in primates, including humans, but this has never been found in rodents. To address this long-standing discrepancy, we measured hippocampal activity from rodents during real-world random foraging. Surprisingly, ∼ 25% of neurons exhibited significant directional modulation with respect to visual cues. To dissociate the contributions of visual and vestibular cues, we made similar measurements in virtual reality, in which only visual cues were informative. Here, we found significant directional modulation despite the severe loss of vestibular information, challenging prevailing theories of directionality. Changes in the amount of angular information in visual cues induced corresponding changes in head-directional modulation at the neuronal and population levels. Thus, visual cues are sufficient for-and play a predictable, causal role in-generating directionally selective hippocampal responses. These results dissociate hippocampal directional and spatial selectivity and bridge the gap between primate and rodent studies.


Assuntos
Comportamento Apetitivo , Hipocampo/fisiologia , Animais , Eletrofisiologia/métodos , Movimentos da Cabeça , Hipocampo/citologia , Humanos , Masculino , Neurônios/citologia , Ratos , Ratos Long-Evans , Vestíbulo do Labirinto/fisiologia
2.
Nature ; 602(7897): 461-467, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140401

RESUMO

Visual cortical neurons encode the position and motion direction of specific stimuli retrospectively, without any locomotion or task demand1. The hippocampus, which is a part of the visual system, is hypothesized to require self-motion or a cognitive task to generate allocentric spatial selectivity that is scalar, abstract2,3 and prospective4-7. Here we measured rodent hippocampal selectivity to a moving bar of light in a body-fixed rat to bridge these seeming disparities. About 70% of dorsal CA1 neurons showed stable activity modulation as a function of the angular position of the bar, independent of behaviour and rewards. One-third of tuned cells also encoded the direction of revolution. In other experiments, neurons encoded the distance of the bar, with preference for approaching motion. Collectively, these demonstrate visually evoked vectorial selectivity (VEVS). Unlike place cells, VEVS was retrospective. Changes in the visual stimulus or its predictability did not cause remapping but only caused gradual changes. Most VEVS-tuned neurons behaved like place cells during spatial exploration and the two selectivities were correlated. Thus, VEVS could form the basic building block of hippocampal activity. When combined with self-motion, reward or multisensory stimuli8, it can generate the complexity of prospective representations including allocentric space9, time10,11 and episodes12.


Assuntos
Hipocampo , Luz , Percepção Espacial , Processamento Espacial , Córtex Visual , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/efeitos da radiação , Hipocampo/citologia , Hipocampo/fisiologia , Hipocampo/efeitos da radiação , Neurônios/fisiologia , Neurônios/efeitos da radiação , Ratos , Córtex Visual/citologia , Córtex Visual/fisiologia
3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260476

RESUMO

SARS-CoV-2, the virus responsible for COVID-19, triggers symptoms such as sneezing, aches and pain.1 These symptoms are mediated by a subset of sensory neurons, known as nociceptors, that detect noxious stimuli, densely innervate the airway epithelium, and interact with airway resident epithelial and immune cells.2-6 However, the mechanisms by which viral infection activates these neurons to trigger pain and airway reflexes are unknown. Here, we show that the coronavirus papain-like protease (PLpro) directly activates airway-innervating trigeminal and vagal nociceptors in mice and human iPSC-derived nociceptors. PLpro elicits sneezing and acute pain in mice and triggers the release of neuropeptide calcitonin gene-related peptide (CGRP) from airway afferents. We find that PLpro-induced sneeze and pain requires the host TRPA1 ion channel that has been previously demonstrated to mediate pain, cough, and airway inflammation.7-9 Our findings are the first demonstration of a viral product that directly activates sensory neurons to trigger pain and airway reflexes and highlight a new role for PLpro and nociceptors in COVID-19.

4.
Neuron ; 109(19): 3075-3087.e2, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411514

RESUMO

Itch is a discrete and irritating sensation tightly coupled to a drive to scratch. Acute scratching developed evolutionarily as an adaptive defense against skin irritants, pathogens, or parasites. In contrast, the itch-scratch cycle in chronic itch is harmful, inducing escalating itch and skin damage. Clinically and preclinically, scratching incidence is currently evaluated as a unidimensional motor parameter and believed to reflect itch severity. We propose that scratching, when appreciated as a complex, multidimensional motor behavior, will yield greater insight into the nature of itch and the organization of neural circuits driving repetitive motor patterns. We outline the limitations of standard measurements of scratching in rodent models and present new approaches to observe and quantify itch-evoked scratching. We argue that accurate quantitative measurements of scratching are critical for dissecting the molecular, cellular, and circuit mechanisms underlying itch and for preclinical development of therapeutic interventions for acute and chronic itch disorders.


Assuntos
Prurido/fisiopatologia , Animais , Modelos Animais de Doenças , Cães , Humanos , Camundongos , Prurido/terapia , Ratos
5.
Science ; 355(6331)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28280248

RESUMO

Neural activity in vivo is primarily measured using extracellular somatic spikes, which provide limited information about neural computation. Hence, it is necessary to record from neuronal dendrites, which can generate dendritic action potentials (DAPs) in vitro, which can profoundly influence neural computation and plasticity. We measured neocortical sub- and suprathreshold dendritic membrane potential (DMP) from putative distal-most dendrites using tetrodes in freely behaving rats over multiple days with a high degree of stability and submillisecond temporal resolution. DAP firing rates were several-fold larger than somatic rates. DAP rates were also modulated by subthreshold DMP fluctuations, which were far larger than DAP amplitude, indicating hybrid, analog-digital coding in the dendrites. Parietal DAP and DMP exhibited egocentric spatial maps comparable to pyramidal neurons. These results have important implications for neural coding and plasticity.


Assuntos
Córtex Cerebral/fisiologia , Dendritos/fisiologia , Potenciais da Membrana , Potenciais de Ação , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/citologia , Eletrodos Implantados , Masculino , Neuroglia/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos LEC , Sono/fisiologia
6.
Nat Neurosci ; 18(1): 121-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420065

RESUMO

During real-world (RW) exploration, rodent hippocampal activity shows robust spatial selectivity, which is hypothesized to be governed largely by distal visual cues, although other sensory-motor cues also contribute. Indeed, hippocampal spatial selectivity is weak in primate and human studies that use only visual cues. To determine the contribution of distal visual cues only, we measured hippocampal activity from body-fixed rodents exploring a two-dimensional virtual reality (VR). Compared to that in RW, spatial selectivity was markedly reduced during random foraging and goal-directed tasks in VR. Instead we found small but significant selectivity to distance traveled. Despite impaired spatial selectivity in VR, most spikes occurred within ∼2-s-long hippocampal motifs in both RW and VR that had similar structure, including phase precession within motif fields. Selectivity to space and distance traveled were greatly enhanced in VR tasks with stereotypical trajectories. Thus, distal visual cues alone are insufficient to generate a robust hippocampal rate code for space but are sufficient for a temporal code.


Assuntos
Gráficos por Computador , Percepção Espacial/fisiologia , Interface Usuário-Computador , Animais , Fenômenos Eletrofisiológicos/fisiologia , Objetivos , Hipocampo/fisiologia , Locomoção/fisiologia , Masculino , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans
7.
PLoS One ; 8(11): e80465, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224054

RESUMO

Understanding of adaptive behavior requires the precisely controlled presentation of multisensory stimuli combined with simultaneous measurement of multiple behavioral modalities. Hence, we developed a virtual reality apparatus that allows for simultaneous measurement of reward checking, a commonly used measure in associative learning paradigms, and navigational behavior, along with precisely controlled presentation of visual, auditory and reward stimuli. Rats performed a virtual spatial navigation task analogous to the Morris maze where only distal visual or auditory cues provided spatial information. Spatial navigation and reward checking maps showed experience-dependent learning and were in register for distal visual cues. However, they showed a dissociation, whereby distal auditory cues failed to support spatial navigation but did support spatially localized reward checking. These findings indicate that rats can navigate in virtual space with only distal visual cues, without significant vestibular or other sensory inputs. Furthermore, they reveal the simultaneous dissociation between two reward-driven behaviors.


Assuntos
Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Recompensa , Comportamento Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA