RESUMO
The transcriptional co-activators YAP and TAZ are key regulators of organ size and tissue homeostasis, and their dysregulation contributes to human cancer. Here, we discover YAP/TAZ as bona fide downstream effectors of the alternative Wnt signaling pathway. Wnt5a/b and Wnt3a induce YAP/TAZ activation independent of canonical Wnt/ß-catenin signaling. Mechanistically, we delineate the "alternative Wnt-YAP/TAZ signaling axis" that consists of Wnt-FZD/ROR-Gα12/13-Rho GTPases-Lats1/2 to promote YAP/TAZ activation and TEAD-mediated transcription. YAP/TAZ mediate the biological functions of alternative Wnt signaling, including gene expression, osteogenic differentiation, cell migration, and antagonism of Wnt/ß-catenin signaling. Together, our work establishes YAP/TAZ as critical mediators of alternative Wnt signaling.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Receptores Frizzled/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Transativadores , Fatores de Transcrição , Proteínas de Sinalização YAP , beta Catenina/metabolismoRESUMO
Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8+ T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.
Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Replicação do DNA/genética , Epigênese Genética , Histona Desmetilases/metabolismo , Imunidade/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estresse Fisiológico/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA/genética , Células Epiteliais/metabolismo , Deleção de Genes , Humanos , Metástase Linfática , Camundongos Transgênicos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3/metabolismo , Células Th1/imunologiaRESUMO
Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica , Transativadores/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes fos/genética , Células HEK293 , Humanos , Fígado/metabolismo , Melanoma/fisiopatologia , Camundongos , Mitógenos/farmacologia , Tamanho do Órgão/genética , Regiões Promotoras Genéticas/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Neoplasias Uveais/fisiopatologia , Proteínas de Sinalização YAPRESUMO
Hydrotropism facilitates the orientation of plant roots towards regions of elevated water potential, enabling them to absorb adequate water. Although calcium signaling plays a crucial role in plant response to water tracking, the exact regulatory mechanisms remain a mystery. Here, we employed the Arabidopsis (Arabidopsis thaliana) hydrotropism-specific protein MIZU-KUSSEI1 (MIZ1) as bait and found that calcium-dependent protein kinases4/5/6/11 (CPK4/5/6/11) interacted with MIZ1 in vitro and in vivo. The cpk4/5/6/11 mutant exhibited increased sensitivity to water potential and enhanced root tip curvature. Furthermore, CPK4/5/6/11 primarily phosphorylated MIZ1 at Ser14/36 residues. Additionally, CPK-mediated phosphorylation of MIZ1 relieved its inhibitory effect on the activity of the endoplasmic reticulum-localized Ca2+ pump ECA1, altering the balance between cytoplasmic Ca2+ inflow and outflow, thereby negatively regulating the hydrotropic growth of plants. Overall, our findings unveil the molecular mechanisms by which the CPK4/5/6/11-MIZ1 module functions in regulating plant hydrotropism responses and provide a theoretical foundation for enhancing plant water use efficiency and promoting sustainable agriculture.
RESUMO
Hepatocellular carcinoma (HCC)-the most common form of liver cancer-is an aggressive malignancy with few effective treatment options1. Lenvatinib is a small-molecule inhibitor of multiple receptor tyrosine kinases that is used for the treatment of patients with advanced HCC, but this drug has only limited clinical benefit2. Here, using a kinome-centred CRISPR-Cas9 genetic screen, we show that inhibition of epidermal growth factor receptor (EGFR) is synthetic lethal with lenvatinib in liver cancer. The combination of the EGFR inhibitor gefitinib and lenvatinib displays potent anti-proliferative effects in vitro in liver cancer cell lines that express EGFR and in vivo in xenografted liver cancer cell lines, immunocompetent mouse models and patient-derived HCC tumours in mice. Mechanistically, inhibition of fibroblast growth factor receptor (FGFR) by lenvatinib treatment leads to feedback activation of the EGFR-PAK2-ERK5 signalling axis, which is blocked by EGFR inhibition. Treatment of 12 patients with advanced HCC who were unresponsive to lenvatinib treatment with the combination of lenvatinib plus gefitinib (trial identifier NCT04642547) resulted in meaningful clinical responses. The combination therapy identified here may represent a promising strategy for the approximately 50% of patients with advanced HCC who have high levels of EGFR.
Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Gefitinibe/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND & AIMS: Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS: A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS: The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS: Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Senescência Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Proteína Exportina 1 , Carioferinas , Neoplasias Hepáticas , Inibidores de Proteínas Quinases , Receptores Citoplasmáticos e Nucleares , Ubiquitina-Proteína Ligases , Humanos , Senescência Celular/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Proteínas de Ligação a Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Sinergismo Farmacológico , Senoterapia/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Hep G2 , Camundongos , Piperazinas , Piridinas , TriazóisRESUMO
Liver cancer remains difficult to treat, owing to a paucity of drugs that target critical dependencies1,2; broad-spectrum kinase inhibitors such as sorafenib provide only a modest benefit to patients with hepatocellular carcinoma3. The induction of senescence may represent a strategy for the treatment of cancer, especially when combined with a second drug that selectively eliminates senescent cancer cells (senolysis)4,5. Here, using a kinome-focused genetic screen, we show that pharmacological inhibition of the DNA-replication kinase CDC7 induces senescence selectively in liver cancer cells with mutations in TP53. A follow-up chemical screen identified the antidepressant sertraline as an agent that kills hepatocellular carcinoma cells that have been rendered senescent by inhibition of CDC7. Sertraline suppressed mTOR signalling, and selective drugs that target this pathway were highly effective in causing the apoptotic cell death of hepatocellular carcinoma cells treated with a CDC7 inhibitor. The feedback reactivation of mTOR signalling after its inhibition6 is blocked in cells that have been treated with a CDC7 inhibitor, which leads to the sustained inhibition of mTOR and cell death. Using multiple in vivo mouse models of liver cancer, we show that treatment with combined inhibition of of CDC7 and mTOR results in a marked reduction of tumour growth. Our data indicate that exploiting an induced vulnerability could be an effective treatment for liver cancer.
Assuntos
Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Terapia de Alvo Molecular , Sertralina/farmacologia , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sertralina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína Supressora de Tumor p53/genéticaRESUMO
Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca2+ oscillations in Arabidopsis roots. These Ca2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca2+-dependent protein kinases CPK21 and CPK23 as Ca2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21/23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca2+-CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cálcio , Proteínas de Transporte de Cátions , Manganês , Proteínas Quinases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Manganês/metabolismo , Micronutrientes/metabolismo , Fosforilação , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , SoloRESUMO
Nitrogen (N) is one of the most essential mineral elements for plants. Brassinosteroids (BRs) play key roles in plant growth and development. Emerging evidence indicates that BRs participate in the responses to nitrate deficiency. However, the precise molecular mechanism underlying the BR signaling pathway in regulating nitrate deficiency remains largely unknown. The transcription factor BES1 regulates the expression of many genes in response to BRs. Root length, nitrate uptake and N concentration of bes1-D mutants were higher than those of wild-type under nitrate deficiency. BES1 levels strongly increased under low nitrate conditions, especially in the non-phosphorylated (active) form. Furthermore, BES1 directly bound to the promoters of NRT2.1 and NRT2.2 to promote their expression under nitrate deficiency. Taken together, BES1 is a key mediator that links BR signaling under nitrate deficiency by modulating high affinity nitrate transporters in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a DNA , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Nitratos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte de Ânions/metabolismoRESUMO
Boron (B) is crucial for plant growth and development. B deficiency can impair numerous physiological and metabolic processes, particularly in root development and pollen germination, seriously impeding crop growth and yield. However, the molecular mechanism underlying boron signal perception and signal transduction is rather limited. In this study, we discovered that CPK10, a calcium-dependent protein kinase in the CPK family, has the strongest interaction with the boron transporter BOR1. Mutations in CPK10 led to growth and root development defects under B-deficiency conditions, while constitutively active CPK10 enhanced plant tolerance to B deficiency. Furthermore, we found that CPK10 interacted with and phosphorylated BOR1 at the Ser689 residue. Through various biochemical analyses and complementation of B transport in yeast and plants, we revealed that Ser689 of BOR1 is important for its transport activity. In summary, these findings highlight the significance of the CPK10-BOR1 signaling pathway in maintaining B homeostasis in plants and provide targets for the genetic improvement of crop tolerance to B-deficiency stress.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Boro , Raízes de Plantas , Adaptação Fisiológica/genética , Antiporters/metabolismo , Antiporters/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Boro/metabolismo , Boro/deficiência , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fosforilação , Raízes de Plantas/metabolismo , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Transdução de SinaisRESUMO
Arsenate [As(V)] is a metalloid with heavy metal properties and is widespread in many environments. Dietary intake of food derived from arsenate-contaminated plants constitutes a major fraction of the potentially health-threatening human exposure to arsenic. However, the mechanisms underlying how plants respond to arsenate stress and regulate the function of relevant transporters are poorly understood. Here, we observed that As(V) stress induces a significant Ca2+ signal in Arabidopsis (Arabidopsis thaliana) roots. We then identified a calcium-dependent protein kinase, CALCIUM-DEPENDENT PROTEIN KINASE 23 (CPK23), that interacts with the plasma membrane As(V)/Pi transporter PHOSPHATE TRANSPORTER 1;1 (PHT1;1) in vitro and in vivo. cpk23 mutants displayed a sensitive phenotype under As(V) stress, while transgenic Arabidopsis plants with constitutively active CPK23 showed a tolerant phenotype. Furthermore, CPK23 phosphorylated the C-terminal domain of PHT1;1, primarily at Ser514 and Ser520. Multiple experiments on PHT1;1 variants demonstrated that PHT1;1S514 phosphorylation is essential for PHT1;1 function and localization under As(V) stress. In summary, we revealed that plasma-membrane-associated calcium signaling regulates As(V) tolerance. These results provide insight for crop bioengineering to specifically address arsenate pollution in soils.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Arseniatos/toxicidade , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Membrana Celular/metabolismoRESUMO
Mycobacterium tuberculosis (MTB) and Mycobacterium bovis (M. bovis) are closely related pathogenic mycobacteria known to cause chronic pulmonary infections in both humans and animals. Despite sharing nearly identical genomes and virulence factors, these two bacteria display variations in host tropism, epidemiology, and clinical presentations. M. bovis Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis commonly utilized as a vaccine for tuberculosis (TB). Nevertheless, the molecular underpinnings of these distinctions and the intricacies of host-pathogen interactions remain areas of ongoing research. In this study, a comparative transcriptomic analysis was conducted on human leukemia macrophages (THP-1) infected with either MTB H37Rv or M. bovis BCG (Tokyo strain) to elucidate common and strain-specific responses at the transcriptional level. RNA sequencing was utilized to characterize the transcriptomes of human primary macrophages infected with MTB or BCG at 6 and 24 h post-infection. The findings indicate that both MTB and BCG induce substantial and dynamic alterations in the transcriptomes of THP-1, with a notable overlap in the quantity and extent of differentially expressed genes (DEGs). Moreover, gene ontology (GO) enrichment analysis unveiled shared pathways related to immune response, cytokine signaling, and apoptosis. The immune response of macrophages to bacterial infections at 6 h exhibited significantly greater intensity compared to that at 24 h. Furthermore, distinct gene sets displaying notable variances between MTB and BCG infections were identified. The profound impact of MTB infection on macrophage gene expression, particularly within the initial 6 h, was evident. Additionally, downregulation of pathways such as Focal adhesion, Rap1 signaling pathway, and Regulation of actin cytoskeleton was observed. The pathways associated with inflammation reactions and cell apoptosis exhibited significant differences, with BCG triggering macrophage apoptosis and MTB enhancing the survival of intracellular bacteria. Our findings reveal that MTB and BCG provoke similar yet distinct transcriptional responses in human macrophages, indicating variations in their pathogenesis and ability to adapt to host environments. These results offer novel insights into the molecular mechanisms governing host-pathogen interactions and may contribute to a deeper understanding of TB pathogenesis.
Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Vacina BCG , Macrófagos , Perfilação da Expressão GênicaRESUMO
PURPOSE: This study compared survival and metastasis occurrence between colorectal neuroendocrine neoplasms (cNEN) and colorectal adenocarcinoma with neuroendocrine differentiation (cNED) and further explored their prognostic factors and treatment indicators. METHODS: Patients diagnosed as cNEN and cNED in West China Hospital from January 2009 to December 2020 were enrolled. The diagnosis and metastasis rates were calculated. Univariate and multivariate Cox analyses were conducted for progression-free survival (PFS) in cNEN surgical patients, and generalized linear regression was used for metastatic disease. RESULT: The study enrolled 435 patients, including 257 neuroendocrine tumors (NET), 52 neuroendocrine carcinomas (NEC), 29 mixed neuroendocrine-non-neuroendocrine neoplasms (MiNEN), and 97 NED patients, of whom 202 received local resection, and 233 received radical resection. Metastasis rates were higher in MiNEN and NEC groups compared to other groups (NED: 28.9%, MiNEN: 58.6%, NEC: 65.4%, NET: 8.6%, p < 0.001). The liver is the main metastatic site in cNEN, whereas cNED metastasized to various sites. For NEC and MiNEN patients, colon location (p = 0.002) and T stage > 2 (p = 0.040) were associated with disease progression separately. Independent risk factors for metastatic NET included tumor grade G2/G3 (p < 0.001), colon location (p = 0.001), size ≥ 1 cm (p = 0.005), and CK20 partial positive (p < 0.001). CONCLUSION: cNEN show high metastatic capacity and are challenging to diagnose. More aggressive treatment and follow-up strategies are necessary for those patients. NET tumor grade higher than G2, size larger than 1 cm, or located in the colon should be managed with radical surgery.
Assuntos
Adenocarcinoma , Neoplasias Colorretais , Tumores Neuroendócrinos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Estudos Retrospectivos , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/cirurgia , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adenocarcinoma/mortalidade , Prognóstico , Idoso , Diferenciação Celular , Adulto , Metástase Neoplásica , Fatores de RiscoRESUMO
Mammalian cells are surrounded by neighbouring cells and extracellular matrix (ECM), which provide cells with structural support and mechanical cues that influence diverse biological processes1. The Hippo pathway effectors YAP (also known as YAP1) and TAZ (also known as WWTR1) are regulated by mechanical cues and mediate cellular responses to ECM stiffness2,3. Here we identified the Ras-related GTPase RAP2 as a key intracellular signal transducer that relays ECM rigidity signals to control mechanosensitive cellular activities through YAP and TAZ. RAP2 is activated by low ECM stiffness, and deletion of RAP2 blocks the regulation of YAP and TAZ by stiffness signals and promotes aberrant cell growth. Mechanistically, matrix stiffness acts through phospholipase Cγ1 (PLCγ1) to influence levels of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, which activates RAP2 through PDZGEF1 and PDZGEF2 (also known as RAPGEF2 and RAPGEF6). At low stiffness, active RAP2 binds to and stimulates MAP4K4, MAP4K6, MAP4K7 and ARHGAP29, resulting in activation of LATS1 and LATS2 and inhibition of YAP and TAZ. RAP2, YAP and TAZ have pivotal roles in mechanoregulated transcription, as deletion of YAP and TAZ abolishes the ECM stiffness-responsive transcriptome. Our findings show that RAP2 is a molecular switch in mechanotransduction, thereby defining a mechanosignalling pathway from ECM stiffness to the nucleus.
Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transformação Celular Neoplásica , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Quinases do Centro Germinativo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Transcriptoma , Proteínas de Sinalização YAP , Proteínas rap de Ligação ao GTP/genéticaRESUMO
The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.
Assuntos
Poluentes Ambientais , Peixes , Mamíferos , Animais , Poluentes Ambientais/toxicidade , Osso e Ossos/efeitos dos fármacos , Evolução Biológica , VertebradosRESUMO
The aim of this study was to examine the expression of programmed death-ligand 1 (PD-L1) and of T cell immunoglobulin and mucin domain-containing protein (TIM3) in oral epithelial dysplasia and head and neck squamous cell carcinoma (HNSCC). Mouse HNSCC was induced with 4-nitroquinoline-1 oxide (4NQO). Oral epithelial dysplastic lesions, carcinoma in situ and HNSCC lesions were stained with anti-PD-L1 and TIM3 antibodies. The expression of PD-L1 and TIM3 in tumor cells and immune cells was semiquantitatively measured and compared. In parallel, human dysplasia and HNSCC were stained with anti-PD-L1 and anti-TIM3. The expression pattern of PD-L1+ and TIM3+ cells was further compared. In human and mouse samples both PD-L1 and TIM3 were found to be expressed in neoplastic and immune cells in HNSCC, but not in dysplasia. There was no significant difference in PD-L1 and TIM3 expression between metastatic and nonmetastatic HNSCC. We conclude that the 4NQO-induced mouse HNSCC model may be an excellent preclinical model for immune checkpoint therapy.
Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Receptor Celular 2 do Vírus da Hepatite A , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Antígeno B7-H1/metabolismo , Camundongos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , 4-Nitroquinolina-1-Óxido , FemininoRESUMO
Demonstrating the temporal changes in PM2.5 pollution risk in regions facing serious PM2.5 pollution problems can provide scientific evidence for the air pollution control of the region. However, research on the variation of PM2.5 pollution risk on a fine temporal scale is very limited. Therefore, we developed a method for quantitative characterizing PM2.5 pollution risk based on the supply and demand of PM2.5 removal services, analyzed the time series characteristics of PM2.5 pollution risk, and explored the reasons for the temporal changes using the urban areas of Beijing as the case study area. The results show that the PM2.5 pollution risk in the urban areas of Beijing was close between 2008 and 2012, decreased by approximately 16.3% in 2016 compared to 2012, and further decreased by approximately 13.2% in 2021 compared to 2016. The temporal variation pattern of the PM2.5 pollution risk in 2016 and 2021 showed significant differences, including an increase in the number of risk-free days, a decrease in the number of heavily polluted days, and an increase in the stability of the risk day sequence. The significant reduction in risk level was mainly attributed to Beijing's air pollution control measures, supplemented by the impact of COVID-19 control measures in 2021. The results of PM2.5 pollution risk decomposition indicate that compared to the previous 2 years, the stability and predictability of the risk variation in 2016 increased, but the overall characteristics of high risk from November to February and low risk from April to September did not change. The high risk from November to February was mainly due to the demand for coal heating during this period, a decrease in PM2.5 removal service supply caused by plant leaf fall, and the common occurrence of temperature inversions in winter, which hinders the diffusion of air pollutants. This study provides a method for the analysis of PM2.5 pollution risk on fine temporal scales and may provide a reference for the PM2.5 pollution control in the urban areas of Beijing.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Pequim , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , HumanosRESUMO
Almost all currently approved systemic therapies for hepatocellular carcinoma (HCC) failed to achieve satisfactory therapeutic effect. Exploring tailored treatment strategies for different individuals provides an approach with the potential to maximize clinical benefit. Previously, multiple studies have reported that hepatoma cell lines belonging to different molecular subtypes respond differently to the same treatment. However, these studies only focused on a small number of typical chemotherapy or targeted drugs across limited cell lines due to time and cost constraints. To compensate for the deficiency of previous experimental researches as well as link molecular classification with therapeutic response, we conducted a comprehensive in silico screening, comprising nearly 2000 compounds, to identify compounds with subclass-specific efficacy. Here, we first identified two transcriptome-based HCC subclasses (AS1 and AS2) and then made comparison of drug response between two subclasses. As a result, we not only found that some agents previously considered to have low efficacy in HCC treatment might have promising therapeutic effects for certain subclass, but also identified novel therapeutic compounds that were not routinely used as anti-tumor drugs in clinic. Discovery of agents with subclass-specific efficacy has potential in changing the status quo of population-based therapies in HCC and providing new insights into precision oncology.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transcriptoma , Antineoplásicos/classificação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Medicina de PrecisãoRESUMO
Cadmium (Cd) is a toxic heavy element for plant growth and development, and plants have evolved many strategies to cope with Cd stress. However, the mechanisms how plants sense Cd stress and regulate the function of transporters remain very rudimentary. Here, we found that Cd stress induces obvious Ca2+ signals in Arabidopsis roots. Furthermore, we identified the calcium-dependent protein kinases CPK21 and CPK23 that interacted with the Cd transporter NRAMP6 through a variety of protein interaction techniques. Then, we confirmed that the cpk21 23 double mutants significantly enhanced the sensitive phenotype of cpk23 single mutant under Cd stress, while the overexpression and continuous activation of CPK21 and CPK23 enhanced plants tolerance to Cd stress. Multiple biochemical and physiological analyses in yeast and plants demonstrated that CPK21/23 phosphorylate NRAMP6 primarily at Ser489 and Thr505 to inhibit the Cd transport activity of NRAMP6, thereby improving the Cd tolerance of plants. Taken together, we found a plasma membrane-associated calcium signaling that modulates Cd tolerance. These results provide new insights into the molecular breeding of crop tolerance to Cd stress.